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The design of effective science and innovation policy is partially predicated on the

notion that decision makers have reliable evidence-based performance measures1,2. This is

an area of intense investigation as witnessed by the recent articles on Science Metrics in

Nature 3,4 and the NSF’s The Science of Science & Innovation Policy (SciSIP) program5.

The study of science systems has shown they are complex, adaptive systems with emergent

properties frequently characterized by power law distributions and functions6-8. These

properties are rarely used to prepare measures that inform policy makers. A difficulty with

traditional measures such as national wealth (GDP per capita), R&D intensity

(GERD/GDP) and scientific impact (citations/paper) is that they are based on measures of

wealth and impact (i.e. citations) that have power law distributions9,10. Performance

measures based on population averages derived from these distributions may have large or

indefinable error limits making comparisons across groups misleading or uninformative

11,12. This article illustrates how a scaling model of a science system constructed from

1984-2007 Web of Science (WoS) data can be used to prepare measures with error limits

that provide insight into the evolution and performance of a complex science system and

answer policy relevant questions13.

Complexity scientists have found a prevalence of power law distributions in natural

and social systems, particularly through the study of complex networks10,14. These

probability distributions are characterized by p(x)=Cx–α for x ≥xmin where α is a constant 

called the scaling factor. Citation networks used to prepare measures of the impact of

published research are complex networks with α≈3.0 9,15.
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Power law distributions are unique; they are scale-invariant. It is the only distribution that

is the same on whatever scale it is examined10. Random and natural populations drawn

from this distribution are scale-invariant too. A natural population is one that preserves the

clustering, ‘community’ or small world structure which is unlike a population drawn from a

truncated distribution16,17.

Power law distributions with α<3 have infinite variance, a condition that doesn’t 

satisfy the central limit theorem, and error limits for the population averages cannot be

estimated18. Even with this knowledge indicator developers sometimes truncate the tail of a

citation distribution, model the remaining population as if it satisfies the central limit

theorem and then produce population average based performance measures19. This action

removes the highest impact and perhaps most innovative entities from consideration and

distorts the information presented to decision makers. Similarly, normalized performance

measures based on the ratio of population averages from these distributions cannot be

assigned confidence intervals. They may have little informative value too20. The h-index,

frequently used in the evaluation of individuals, is one of the few measures that partially

accounts for the underlying distribution21,22.

Science policy is often informed by indicators such as scientific impact which is

constructed from ratios of two primary measures: citations and papers. Sometimes a

collection of such ratios used to characterize groups in a system may show a scaling

correlation between the numerators and denominators. For example, impact, C, measured

using citations has been shown to scale with group size, P, measured using numbers of

peer-reviewed publications23,24. This property is considered a prevalent property of a

science system and the scaling factor is a measure of the Matthew effect in science13,25.

Given C≈Pα then C/P≈Pα-1 and if α≠1.0 then we know scientific impact, C/P, scales 

nonlinearly with group size too.

Frequently decision makers are given reports with tables of groups (i.e. fields, subject

areas, nations, institutions, etc.) ranked by their scientific impact. Shortly an example will

be given of the different perspective a decision maker gets when groups are ranked by an
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impact measure that is adjusted for the nonlinear scaling effects of group size instead of

using scientific impact.

Let’s examine a model of a global science system derived from the 1984-2007 WoS

and built using two scaling principles. A citation network was constructed from 10.9

million peer-revieweda publications indexed between 1984 and 2002 that were cited more

than 118 million times by publications indexed between 1984 and 2007. Thomson Reuters

has assigned each document to one of 138 subject categories that can be aggregated into

thirteen academic fields using a schemeb developed for the National Science Foundation26.

Citations to publications in a given year were counted using a fixed 6-year citation

windowc. Other models can be constructed using different citation windows and document

classifications.

The WoS data are relatively free of measurement error. The scaling factor for a

power law distribution is best determined using a maximum likelihood estimation method10

. However, the noiseless nature of the WoS data makes ordinary least squares regression on

log transformed data sufficient for estimating the parameters of the scaling correlation

between citations and papers10,27.

Two scaling principles are used to construct the model. The first principle is based on

a power law function that exists between any pair of coupled exponential growth

processes28,29. The scaling factor is given by the ratio of the exponents of the individual

exponential processes. This is illustrated in Figure 1. Figure 1a depicts the exponential

growths of Earth & Space sciences papers and 6-year citations; Figure 1b is a log-log plot

of 6-year citation versus paper counts. The scaling factor predicted by the ratio of the

exponential growth exponents (0.065/0.041) is 1.58. The measured α is 1.57±0.03. The 

scaling factor indicates that given current growth rates if the Earth & Space sciences

a Articles, notes and review source document types that were cited at least once
b Recently updated by Science-Metrix, Montreal, Canada
c Citations in the year of publication and subsequent five years were counted. Author self-citations were not
removed
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community published twice as many papers their impact would be expected to increase 21.57

or 3.0 times.

Figure 1 Exponential growth and scaling. a growth of earth & space papers and

citations and b scaling function between the growths of citations and papers.
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Values of α, standard errors, R2 and scientific impact for 13 NSF fields ranked in

descending order of α are given in Table 1. The scaling factor can be used as a measure of 

the relative growth of a field’s size and its impact on the research community. This measure

is called a scale-independent measure and it can be compared across fields of different sizes

without additional adjustment. The relative growth of a group’s impact to its growth in size

is indicative of such things as the rate of innovation and utility of research to others. Notice

the magnitude of the scientific impact is not a predictor of α. 

Table 1 – Field scaling factor

NSF Field α R2 C/P

Biology 2.92 ± 0.09 0.98 6.8

Professional Fields 2.46 ± 0.17 0.92 5.0

Psychology 2.30 ± 0.18 0.90 8.1

Humanities* 2.19 ± 0.16 0.91 4.0

Chemistry 2.12 ± 0.07 0.98 9.2

Clinical Medicine 2.06 ± 0.06 0.99 12.3

Biomedical Research 1.83 ± 0.04 0.99 20.7

Social Sciences 1.79 ± 0.04 0.99 4.6

All Fields 1.79 ± 0.04 0.99 10.7

Earth & Space 1.57 ± 0.03 1.00 10.0

Health Sciences 1.55 ± 0.05 0.98 6.5

Mathematics 1.55 ± 0.07 0.96 3.9

Engineering & Technology 1.41 ± 0.06 0.97 4.8

Physics 1.13 ± 0.05 0.97 9.5

* Publications and citations declined with time

Using Earth and Space sciences as an example, the scaling function between C and P

tells us that since C/P≈Pα-1 then the growth in scientific impact scales with size and it has a

scaling factor of 0.58. A doubling of size would be expected to produce (20.58) 1.5 times

increase in scientific impact. Also, since the exponential growth of all NSF fields and their

impacts are coupled in the time domain the same principle can be used to prepare a variety

of scale-independent measures of the relative growths of sizes and/or impacts for pairs of

fields.
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The second principle is based on empirical and simulation observations that

complex weighted networks exhibit degree-strength scaling correlations30. Additional

evidence comes from the study of web networks that show the Gini coefficient increases

when nodes are aggregated into logical groups7. Typically a complex network such as a

citation network is represented by a binary graph where the edges have a value 1 if they

exist and 0 otherwise. When nodes are aggregated into groups the result is a complex

network with weighted edges that exhibit a scaling function between node strength (e.g.

scientific productivity) and connectivity (e.g. node degree, citations)31,32. The scaling

factor for the function contains information about the topology of the network (e.g. small

world structure) as well as the sizes of the nodes and weights of the edges.

Consider a binary citation network where papers are aggregated into groups defined

by WoS subject categories or into NSF fields to produce a weighted network. Subject

categories and NSF fields are natural populations selected using citation patterns and expert

knowledge. The nodes represent the publications in each category/field and their sizes are

the number of papers they contain. The weights of incoming and outgoing edges are the

number of citations from or to other groups, respectively. Node loops are weighted by the

number of citations between papers within a group. It has been found that citation networks

exhibit scaling correlation between node degree (sum of incoming weights and loop

weight) and node strength or size (numbers of publications)13,24.

The second principle, illustrated in Figure 2, shows the scaling correlation between

field impact and sized. The annual values were summed over the interval (Shapiro-Wilks

test W=0.97 and p=0.90 for overall values). An examination of individual years showed α 

increased over time from 1.25 to about 1.32 (see insert in Figure 3) with an average value

of 1.28±0.09 shown in Figure 2. A doubling of field size is expected to increase the impact

21.28 or 2.43 times.

d Size was measured using papers that received at least one citation. Cited and uncited, or only papers that
received n or more citations could have been used, however, the parameters of the scaling function would
differ.
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Figure 2 – Scaling function between NSF field sizes and impacts

The regression line represents the systemic scaling tendency across all of the fields in

the system. It can be used to calculate the expected impact of each field. The ratio between

the observed and expected impact values is a scale-independent measure of the impact of a

field relative to the systemic scaling trend. It can be used to rank the fields. The numbers in

brackets separate by commas in Figure 2 are the field ranks determined using (1) the scale-

independent impact measure and (2) the scientific impact, respectively. The difference in

the field ranks using the scale-independent measure compared to the traditional measure is

readily apparent. The ranks of 9 of 13 NSF fields changed by 2 or more positions which

should give decision makers pause for thought.

Figure 3 is a scaling model of a global science system composed of two groups of

elements. The first group is constructed from log-log plots of the relative growth of impact
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and size for the NSF fields whose scaling factors are given in Table 1. The second element

is an overlay of the 1984 and 2002 systemic power regression lines.

Figure 3 – A Scaling model of a complex science system. The model is composed of the

scaling functions between the growths of impact and size for NSF fields overlaid (dotted

lines) with the 1984 and 2002 systemic scaling functions.

Figure 3 illustrates how a scaling model of a complex global science system can be

constructed from 26 years of WoS data and a small collection of power law functions. It

completely encapsulates the evolution of (1) each field’s impact relative to its size and (2)

each field’s impact relative to the impact of other fields. Similar scaling models could be

constructed for other groups such as nations and regions providing insights into the

evolution and performance of national and regional science systems.
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A model can be constructed for 138 WoS subject categories however it is difficult to

display graphically. Also, at this level of disaggregation the statistical significance

decreases. Eighty-two (60%) of the subject categories had R2 ≥0.90 and 111 (80%) 

categories had R2 ≥0.80. Still a significant amount of information can be gleaned from the 

model. For example, consider the top 20 of the 84 subfields with R2 ≥ 0.90 ranked in 

descending order of α in Table 3. Relative to the growth of its size agriculture and food 

science demonstrated the greatest increase in impact increasing tenfold (23.33) every time its

size doubled. The systemic scaling factor across the 138 categories was 1.27±0.03

(R2=0.89) determined using the method described for Figure 2.

Table 2 –Twenty high impact WoS subject categories

Subject Category NSF Field α R2

Agriculture & Food Science Biology 3.33 ± 0.22 0.93
Applied Chemistry Chemistry 2.91 ± 0.19 0.93
Geography & Regional Sciences Social Sciences 2.80 ± 0.21 0.91
Orthopedics Clinical Medicine 2.79 ± 0.16 0.95
Miscellaneous Biomedical Research Biomedical Research 2.68 ± 0.13 0.96
Nutrition & Dietetics Biomedical Research 2.50 ± 0.13 0.96
Social Studies of Medicine Health Sciences 2.31 ± 0.13 0.95
Urology Clinical Medicine 2.31 ± 0.08 0.98
Experimental Psychology Psychology 2.22 ± 0.12 0.96
Geriatrics Clinical Medicine 2.15 ± 0.10 0.96
Ecology Biology 2.12 ± 0.07 0.98
Psychiatry Clinical Medicine 2.07 ± 0.14 0.93
Dermatology & Venereal Diseases Clinical Medicine 2.03 ± 0.08 0.97
Management & Business Professional Fields 2.01 ± 0.11 0.95
Miscellaneous Clinical Medicine Clinical Medicine 2.00 ± 0.08 0.97
Surgery Clinical Medicine 2.00 ± 0.06 0.98
Environmental & Occupational Health Clinical Medicine 1.98 ± 0.12 0.95
Miscellaneous Social Sciences Social Sciences 1.96 ± 0.15 0.91
Otorhinolaryngology Clinical Medicine 1.92 ± 0.09 0.97
Miscellaneous Biology Biology 1.90 ± 0.05 0.99

Scaling models of innovation systems have been constructed using primary measures

that are used to prepare indicators of national wealth, R&D intensity, Web visibility and

scientific impact6-8. These models and scale-independent measures derived from them
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capture and quantify emerging properties of complex innovation systems that traditional

measures can’t. Furthermore, scale-independent measures can be assigned error limits

giving users a reliable confidence interval.

Measures from scaling models answer a variety of policy relevant questions such as

‘how does a primary measures such as impact, GERD and GDP that are commonly used to

compare the performance of groups in a complex innovation system change relative to

group sizes?’ Or ‘how is the performance of one group evolving relative to other groups

given the systemic scaling tendency of the system?’ Scaling models are easy to update.

They can be used to anticipate how a complex science system might evolve if the

parameters remain as measured or if they change under a variety of policy regimes. Scaling

models and scale-independent indicators are useful support tools for decision makers to

inform policies for complex science and innovation systems.
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