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Abstract

The objective of this paper is to analyse the relationship between income in-
equality and environmental innovation. We use a complexity-based algorithm to
compute an index of green inventive capacity in a panel of 57 countries over the
period 1970–2010. The empirical analysis reveals that, on average, inequality is
detrimental to countries’ capacity to engage complex green technologies knowledge
bases. Using non-parametric methods allows us to further articulate this general
finding and to uncover interesting non-linearities in the relationship between inno-
vation and inequality.
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1 Motivation and objectives

The objective of this paper is to explore empirically the relationship between income in-
equality and environmental innovation. These two global challenges stem from different
sources and manifest themselves in different ways, but are arguably tightly connected.
On the one hand, the threat of climate-induced hazards calls upon systemic innovative
responses that include, among other things, technological progress to accelerate the devel-
opment or refinement of sustainable products and processes (Hoffert et al., 2002; Pacala
and Socolow, 2004 (Popp et al., 2010)). One of the key analytical challenges in this de-
bate concerns the identification of the circumstances that facilitate the green transition.
On the other hand, empirical evidence indicates that, besides the widely-known negative
distributional issues, income inequality can also hinder economic performance (see e.g.
Forbes, 2000; Barro, 2000). An intriguing, and yet little explored, claim in this regard
is that such the negative impact depends on the relative incidence of inequality on the
income distribution (Voitchovsky, 2005). Further, income inequality and demand for en-
vironmental innovation exhibit similar patterns since countries that are likely to suffer
the strongest negative effects of environmental degradation are also among the poorest
(Mendelsohn et al., 2006; Bathiany et al., 2018), and often exhibit high levels of income
inequality (Roberts, 2001). Last but not least, scholars have found evidence concerning
a virtuous circle whereby innovation - not specifically green - exacerbates inequality (see
e.g. Aghion et al., 2018) in a way that ultimately undermines the incentives to search
and develop new technologies (Weinhold and Nair-Reichert, 2009).

The present paper analyses some unexplored aspects of the undeniably intricate con-
nections between inequality and green innovation. First, most research focuses on the
factors that favour the emergence of environmental technology (see Barbieri et al., 2016
for a review) but neglects the barriers that may prevent, or slow down, green innovation,
with the exception of (Vona and Patriarca, 2011). The second gap in the literature is that
green technologies are often treated as a homogeneous block and this stands in contrast
with the huge diversity of goals they are designed for (Perruchas and Consoli, 2020), with
the breadth of forms of know-how involved (OECD, 2011) as well as the differential stage
of maturity each has achieved (Barbieri et al., 2020). Such a high degree of diversity is a
peculiarity of this domain of (Barbieri et al., 2018) and obviously affects the distribution
of green innovation capacity across countries (Sbardella et al., 2018).

Bringing together these insights, we address two research questions:

• What is the relationship between income inequality and countries’ capacity to gen-
erate green innovation?

• Does this relationship vary by type of green technology?

To explore these issues, we analyse a panel of 57 countries over the period 1970–2010. To
address the first question we propose regression analysis on a set of variables drawn from
different sources.
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The dependent variable, green innovation capacity, is computed using the Economic
Fitness and Complexity (EFC) algorithm on patent data (Tacchella et al., 2012; Cristelli
et al., 2013). This recursive algorithm was originally designed to predict economic growth
from country export data, and has been subsequently translated also to other domains,
including innovation (Pugliese et al., 2019) and industrial sectors (Sbardella et al., 2017).
The EFC algorithm has also been successfully applied to green innovation in a previ-
ous contribution (Sbardella et al., 2018), while Mealy and Teytelboym (2020) applied
the Economic Complexity Index approach (Hidalgo and Hausmann, 2009) to study green
productive capabilities. The EFC approach allows us to extract information from the
bipartite network linking the countries included in the study to the spectrum of technolo-
gies (green and not) in which they have patented over time. By explicitly taking into
account the complex structure of country-technology interactions, EFC enables us to dif-
ferentiate countries not only according to the volume of green patents (as we would do by
looking e.g. at patenting intensity) but also according to the composition of their patent
portfolios – which is the footprint left behind by the unique capability accumulation path
followed by each country. The main explanatory variable, income inequality, is built using
information on net household income to calculate the Gini coefficient as well as various
income percentile ratios. To address the second research question, we investigate whether
the main result holds over the spectrum of green technologies (from the least to the most
complex ones) and GDP.

The first key finding of our analysis, based on parametric regression, is that income
inequality exhibits significant negative correlation with country green technology fitness.1

On average, countries with high levels of inequality are also characterised by a lower level
of green technology fitness: that is, their technological capabilities mainly cover a smaller
number of green technological domains that are, also, less complex than others. This holds
for different measures of income inequality including the Gini coefficient and other income
percentile ratios. The second key finding, based on non-parametric multivariate Nadaraya-
Watson regressions (Nadaraya, 1964), is that the relationship between inequality and green
fitness is non-linear and, crucially, depends on GDP per capita levels. This brings to the
fore a number of important nuances with respect to the first general finding, in short: (i)
high levels of inequality are especially detrimental for more complex green technologies;
(ii) a certain amount of inequality appear to be necessary for the development of complex
capabilities underlying green technologies, especially in high income countries; (iii) low
inequality opens up opportunities for countries with intermediate levels of per capita
income to develop the specialise in relatively complex green technologies; (iv) inequality
is almost always associated with less complex technologies, the arena where upper-middle
income countries are plausibly more proactive.

1A negative relationship between a measure of complexity and income inequality was previously ob-
tained by Hartmann et al. (2017); however here we focus on the green innovative competitiveness of
countries, and employ the EFC algorithm applied to green technological fields rather than the ECI index
(Hidalgo and Hausmann, 2009) based on product-level export data.
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The contribution of our study are manifold. First, we enrich the hitherto scant liter-
ature on barriers to environmental innovations, in this case income inequality. Second,
by considering the complexity of green technology our analysis implicitly takes into ac-
count the heterogeneity of the attending increasing cost structure and uncertainties of
the exploration process that leads to the generation of these technologies (Barbieri et al.,
2018). This angle is coherent with the rationale of policy interventions aimed at enhancing
cross-fertilisation and boundary spanning across domains on know-how. In the present
paper we discuss whether these policy actions need to be coherent with a more compre-
hensive economic policy that tackles inequality. This is coherent with the emerging dis-
course concerning the interdependencies between items of the Sustainable Development
Goals agenda, wherein both environmental sustainability and inequality are prominent
(e.g. Freistein and Mahlert, 2016). Third, combining parametric and non-parametric
approaches adds important nuances to the analysis of the non-linear relationship between
inequality and green technological capacity. Previous work (e.g. Vona and Patriarca,
2011) finds that the link between the development of green technologies and inequality is
moderated by the level of per capita GDP. Our non-parametric approach confirms this
finding and adds to it by providing new insights into the combination of GDP–income
inequality that exhibits stronger association with more complex technological capabilities.

The remainder of the paper is structured as follows. Section 2 provides a review of the
relevant literature followed in Section 3 by details on the main data sources and variable
construction. Section 4 presents the empirical analysis and the last section concludes and
summarises.

2 Theoretical background

2.1 The inequality innovation nexus

Inequality and innovation are recurrent issues in the scholarly and policy domains, and so
is their mutual relation. One strand of literature considers innovation as a determinant
of inequality and emphasises unbalances in the structure of labour markets and of wages
as the main vehicle. Technical change is known to have been traditionally biased in
favour of more skilled workers and thus to accelerate the replacement of labour among
the unskilled(Acemoglu, 2002) while skilled workers enjoy wage premia. The combination
of these two processes has exacerbated inequality in several advanced economies, especially
the US (Katz and Murphy, 1992). Aghion et al. (2018) contribute to this literature by
looking at the distribution of income between labour and firm owners, and the rate of
innovation. Their work provides theoretical and empirical support to the conjecture that
innovation stimulates entrepreneurship but also increases income inequality. Indeed, the
number of patents filed in US states is positively correlated to the top 1% income share.
However, their results do not hold when broader measures of inequality are used, namely
the Gini coefficient, Atkinson index, etc.
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A second strand of literature investigates the extent to which inequality is a barrier
for innovation. Here, the income distribution affects the development and diffusion of
technologies via a number of possible channels. From a demand-side perspective, in a
more equal society innovation becomes more attractive thanks to the incentives for mass
production goods. Weinhold and Nair-Reichert (2009) point out that, whereas the bottom
and upper part of the distribution of income are more likely to demand, respectively, essen-
tial and customized products and services, middle class consumption generally concerns
more standardized manufacturing goods, which strongly rely on incremental innovations.
As observed by Sokoloff and Khan (1990), greater equality triggers, among other things,
the efficient use of resources, scale economies and, in particular, the rate of inventive
activities. This also implies that the mechanisms through which inequality affects innova-
tion must be observed from a complementary supply side perspective. Khan and Sokoloff
(2001) suggest that a higher level of market participation by population brings about
opportunities for innovative activities. Over the past decades, the improvement of old
products and the re-organisation of production in the US agricultural and manufacturing
sectors were favoured by the high degree of involvement of the middle class (Khan and
Sokoloff, 2001). Moreover, this broad market participation is linked to higher institutional
quality – especially the protection of intellectual property rights – which made patenting
simpler, cheaper and more accessible to US population in those years compared to other
countries. The anecdotal evidence provided by these studies is confirmed by Weinhold
and Nair-Reichert (2009), who investigate the direct role of the middle class share on
patenting activities. Their insights highlight that a more equal income distribution and
strong intellectual property rights protection positively affects patent filing by residents.

The foregoing debate has rarely touched upon environmental innovation but there are
grounds to believe that a broadly similar set of mechanisms are in place. At the same time,
the public good nature of environmental quality improvements entails that inequality
is perceived as influencing innovative activities aimed at tackling local environmental
problems, rather than global ones (e.g. urban PM10 reduction vs. global emissions).
According to the demand-driven innovation approach, two main channels exist. The
first is the so-called “pioneer consumer” effect whereby high-income consumers increase
the demand for initially more expensive green products. In so doing they stimulate
the production of this type of goods, thus leading to price reduction which, eventually,
enables low-income consumers to add these products to their basket. The second effect is
“consumption polarization”, in which case excessive income difference between high and
low income consumers reduces the potential externalities just mentioned. The seminal
study by Vona and Patriarca (2011) points out that the relationship between inequality
and the development of green innovative goods is highly non-linear: at low levels of per-
capita income the pioneer consumer effect prevails, whereas at high level of per-capita
income the reverse occurs. They also explore this empirical relation on a panel of OECD
countries and find that inequality appears less detrimental for innovative activities at the
beginning of their life-cycle, which is in line with the pioneer consumer effect.
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2.2 The complexity of technological developments

The channels through which inequality affects innovation may lead to heterogeneous ef-
fects in relation to the type of technology under investigation (i.e. green vs. non-green)
and/or the socio-economic conditions of the attendant countries (e.g. high, middle, low
income countries). This research, however, neglects the characteristics of knowledge and
how they moderate the inequality-innovation relationship. This gap is significant with
regards to our understanding of green technologies. Barbieri et al. (2018) study to what
extent green technologies differ from non-green ones on a set of patent indicators em-
ployed as a proxy for complexity, novelty and impact of future technological advances.
They find that green patents perform better in all the dimensions considered in the study
compared to their non-green counterparts. The higher complexity of green technologies
implies higher costs and more uncertain knowledge recombination process which, in turn,
leads to a potential underinvestment in the development of green technologies and calls
for policy intervention aimed at cross fertilisation and boundary spanning. In this frame-
work the investigation of the determinant of this more complex knowledge base seems
to justify research questions that tackle this issue. In a study on the diffusion of green
technologies across countries, Sbardella et al. (2018) emphasise that dealing with more
complex portfolios of green technologies requires more advanced invention competences.
From this it follows that, on average, high-income countries be endowed with more devel-
oped capabilities and thus be more likely major inventors of complex technologies. This
resonates with recent findings on the spatial distribution of complex activities, taken as a
whole and not necessarily related to specific (i.e. environmental) domains (Balland and
Rigby, 2017).

In the present study, we investigate whether and to what extent the correlation between
innovation and inequality varies according to the complexity of the country’s portfolio
of green technologies. That is, we explore whether inequality represents a barrier to
innovation in countries where the difficulty to produce different kinds of green knowledge
is higher. By recalling the mechanisms depicted above, higher inequality provides less
incentives to engage in more complex green innovative activities via a demand effect. In
order to identify whether the pioneer consumer effect or the consumption polarisation
mechanism dominates, it is crucial to account for the efforts spent in developing less
and more complex green technologies. On the one hand, we expect inequality to be
associated with less complex green technological capabilities due to the lower incentive
to develop more complex technological solutions which require inventors to face higher
cost and uncertainty in the knowledge generation process. On the other hand, inequality
may represent a barrier also to more complex technologies. However, this relationship
may depend on the level of GDP. That is, a certain level of inequality may be necessary
to provide the incentive to develop more complex capabilities, in line with the pioneer
consumer effect. However, extremely high levels of inequality, especially in high income
countries, may negatively affect the economic returns of more complex capabilities due to
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a lower a demand effect.

3 Data and variable construction

For this study we create a panel of up to 57 countries for the period 1970–2010. The main
variables measure green innovation capacity, income inequality and country characteris-
tics. The choice of the time periods is contingent upon the availability of data, primarily
on green patents and income inequality. We rely on a variety of sources that are described
in greater detail below.

3.1 Fitness complexity approach

The data employed for the empirical exercises is derived from several sources. In par-
ticular, the main dependent variable, country green technology fitness, is constructed by
combining the raw patent data extracted from the PATSTAT database of the European
Patent Office (EPO) with specific information about environment-friendly technologies
collected by the OECD in the environment-related catalogue (ENV-TECH) (Haščič and
Migotto, 2015). PATSTAT aggregates tens of millions of patent documents from over one
hundred national and regional patent offices. These report, for each patent, the date of
filing, the country of residence of inventors and applicants, the patent family (i.e. the
group of patents that share the same priority filing and can be assumed to refer to the
same invention), and a set of standard technology codes that classify the fields of technol-
ogy in which the patent application introduced innovations with respect to the existing
prior art at the time of filing.

For our analysis we use the Cooperative Patent Classification (CPC), a hierarchical
classification that allows to represent the technological spectrum at various resolutions.
However, as detailed as the CPC classification can be, it is not, in isolation, the best
tool to highlight green technologies. In fact, technology classifications have the primary
objective of allowing patent office examiners to easily search prior art in order to assess
the originality of applications; for this reason, though the classification hierarchy groups
similar technologies together, it has a hard time keeping track of the uses of each tech-
nology, which tend to vary over time. The ENV-TECH catalogue comes to our aid in
this respect by grouping CPC codes that are relevant for green innovation in a hierarchy.
This allows us to tweak the CPC classification and partition the technological space at
any given level of disaggregation in a set of green classes and another set of non-green
classes.

We exploit the recursive nature of the EFC algorithm, which defines the technolog-
ical fitness of a country as a function of the complexity of the technologies in which it
innovates and the complexity of a technology as a function of the fitness of the countries
that produce them. In so doing we are able to consistently rank the elements of both sets
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Figure 1: Construction of a binary data matrix for period y. Panel (a): each patent family is
attributed a unit of weight, which is equally split among all combinations of inventor countries
and technological codes included in patent applications belonging to the family which were filed
during period y. Panel (b): a weighted matrix (W) is built in which rows correspond to countries
and columns correspond to technology codes; every (country, technology) pair is attributed the
corresponding sum of patent family shares. Panel (c): W is binarized creating matrix M, which
is then fed to the EFC algorithm.
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and thus to tell more and less complex technologies apart. The EFC algorithm is part
of a larger, and growing, literature based on the application of methodologies inspired
by complexity science to a diverse array of empirical issues ranging from macroeconomic
forecasting (Hidalgo and Hausmann, 2009; Tacchella et al., 2018), the analysis of the
evolution of countries’ productive structures (Hausmann et al., 2007; Hidalgo et al., 2007;
Zaccaria et al., 2014), the relation between complexity and inequality (Hartmann et al.,
2017; Sbardella et al., 2017), to the assessment of capability accumulation and interac-
tion in shaping knowledge creation as well as technological progress (Pugliese et al., 2017,
Napolitano et al., 2018). Indeed, it has been shown that technological capabilities are gen-
erally nested Napolitano et al. (2018); this implies that countries with a very specialized
R&D output will mostly innovate in more ubiquitous (and hence mundane) technological
fields.2.

In order to apply the EFC algorithm to our data and obtain a measure of the green
fitness of countries, we need to represent the set of country-technology relations that
exist at any moment in time as a bipartite graph. To this aim, we assume that every
patent family is a separate invention and assign it one unit of weight for every year in
which at least one new patent has been added to it. For each year, we split the unit
weight of the family equally among all combinations of technology code and inventor
country that appear in that year. Repeating the procedure for all active patent families
year by year, we obtain a measure of the observed innovation intensity of each country
in each technological field that we summarize in a weighted matrix W (see Figure 1 for
an example). We then binarize the weighted matrix W through Revealed Comparative
Advantage (Balassa, 1965)3 and obtain M such that:

Mc,t(y) =

{
1 if Wc,t∑

t′
Wc,t′

>
∑

c′
Wc′,t∑

c′,t′
Wc′,t′

0 otherwise.
(1)

The binary matrix M is then fed to the EFC algorithm, which is defined as follows:





F̃
(n)
c =

∑
t Mc,tQ

(n−1)
t , Q

(n)
t =

Q̃
(n)
t

< Q̃
(n)
t >

Q̃
(n)
t =

1
∑

c Mc,t

1

F
(n)
c

, F
(n)
c =

F̃
(n)
c

< F̃
(n)
c >

(2)

2A corollary to the above is that countries that are able to advance knowledge in more complex (exotic)
fields, and thus achieve higher fitness, are able to innovate across the technological spectrum.

3The sparsity of the data matrices ensures that results are robust to the choice of the binarization
strategy.
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with initial condition:

∑

t

Q
(0)
t = 1 ∀t. (3)

The key ingredients of the recursive EFC algorithm are the Fitness of countries (F)
and the complexity of technologies (Q). In particular, F is the average complexity of the
technologies produced by a country, while Q is, for each technology, a non-linear func-
tion of the fitness values of the countries that include that technology in their baskets.
Non-linearity plays a crucial role in this context because the main term in defining the
complexity of a technological field is the least fit country that innovates in that field. The
underlying rationale is that the fitness of a country captures the competitive advantage
that the underlying endowment of capabilities accrues. The more diverse the set of capa-
bilities, the more complex is the technology space available to the country. Conversely,
a country with low fitness has less capabilities and, therefore, is limited to less complex
technological domains. Depending on the structure of the input matrix, the EFC algo-
rithm is known (Pugliese et al., 2016) to converge to zero fitness and zero complexity at
different speeds for different countries and technologies respectively. However, this is not
an issue because it is always possible to define a consistent ranking along both dimensions.
For this reason, our main dependent variable is the fitness ranking and not the fitness
scores of countries. The same is true for technological complexities, which we employ to
tell more complex technologies apart from less complex ones in the second part of the
empirical analysis.

To illustrate, assume that a breakthrough in human mobility is possible due to progress
in electric self-driving vehicles (henceforth technology Z). Further, assume that two essen-
tial ingredients for the viability of next-generation car technology are effective machine
learning algorithms (technology X) as well as reliable energy-dense batteries (technology
Y). Technology Z will likely be developed in the countries that have capabilities to inno-
vate in technologies X and Y. From the EFC perspective, Z is more complex than the
sum of its building blocks, X and Y, if the set of countries that innovate in Z is smaller
than the set of countries that innovate in X or Y. 4

Figure 2 displays a binary country technology-matrix, in which rows and columns have
been ordered using the EFC algorithm. Rows represent countries in decreasing order of
fitness from top to bottom, while columns are ordered to reflect increasing technological
complexity from left to right. The matrix displays the characteristic nested structure
in which higher fitness countries tend to be more diversified and lower fitness countries
are strong innovators in a subset of the fields in which higher-fitness countries are strong
(see Tacchella et al., 2012 for country-product matrices and Sbardella et al., 2017 for

4Notice that nothing is said about the intricacy of the inventions that rely on technology Z. In fact, a
modern petrol engine has a far grater number of moving parts and components than an electric engine.
Nevertheless, the technology for an electric self-driving car would be more complex than a traditional
oil-fueled vehicle because far less countries would be able to develop the former technology.
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Figure 2: Country-Technology matrix with rows and columns ordered using the EFC algorithm.
Countries are displayed along the rows with fitness decreasing from top to bottom; technological
fields are depicted along the columns with complexity increasing from left to right. Green
technologies correspond the green shaded lines.

region-industrial sector matrices displaying a similar nested structure). Consequently,
the probability of finding rare technological fields, which supposedly require the most
advanced capabilities, increases as fitness increases. The columns in the matrix represent
the full spectrum of CPC and ENV-TECH codes available in the data, so countries in
the figure are ordered by technological fitness. In order to compute country-specific green
technological fitness, we consider only the complexity of the ENV-TECH codes (shaded in
green). Notice that green technologies are quite spread out over the entire technological
spectrum, meaning that they range from very low to relatively high values of complexity.

Last but not least, Figure 3 shows the distribution of inventive efforts across countries
as captured by the fitness ranking of countries. This broad brush picture indicates that
environmental innovative activities are relatively more intense (brighter green) in North
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Figure 3: Geographic distribution of the Green Fitness Ranking across countries. Colour coding:
bright green (top of the ranking), brown (middle) to red (bottom). Grey: no data available.

America, Europe, Russia, China, Japan, and Australia, while countries in Latin America
and in the Middle East are in the mid to bottom part of the ranking (brown to red).

3.2 Income inequality and other dimensions of interest

The main explanatory variable in our regression analysis is income inequality. To build
this, we retrieve information on household net income from the World Income Inequal-
ity Database (WIID)5, which covers 179 countries over the period 1867–2012. For the
purposes of the present paper, we compute five measures of income inequality for each
country. The first is the Gini coefficient, a widely used proxy of inequality with wide
geographical data coverage. Since a major goal of this paper is to look into differences
between various portions of the income distribution, we also extract from the WIID infor-
mation on deciles of disposable income, and compute the following ratios: ninth to first
decile (90:10); eighth to second (80:20); seventh to third (70:30); sixth to fourth (60:40).
We envisage that this ample selection of variables affords a more nuanced understanding
of the extent of different levels of inequality across the board.

To account for unobserved country characteristics, we include a battery of variables
into our empirical analysis, namely: GDP per capita (source: World Bank6), the per-
centage of population with tertiary literacy (source: Barro-Lee7) and population density

5 https://www.wider.unu.edu/project/wiid-world-income-inequality-database (Last access: 28 Jan-
uary 2019)

6https://data.worldbank.org/indicator/NY.GDP.MKTP.CD (Last access: 28 January 2019)
7http://www.barrolee.com/data/full1.htm (Last access: 28 January 2019)
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(source: World Bank8). To ensure coherence across the data, we build averages over
five-year intervals of all the variables under analysis. While this is dictated by the format
of the data on literacy, which is only available at that frequency, taking averages over
periods allows us to account for the fact that green innovation, inequality, and the other
dimensions under analysis change slowly over time.

4 Analysis

4.1 Economic Fitness, Green Innovation and Inequality

Figure 4 provides details about the evolution over time of the ranking of green tech-
nologies based on their complexity. To ensure consistency with the rest of the empirical
analysis, the rankings are computed over 5-year time windows, with the first observation
covering the period 1970–1974 and the last observation covering the 2005–2009 window.
Technological complexity decreases from top to bottom. The left and right y-axes report
the complexity rankings relative to the first and last time window respectively. For ease of
visualization, the y-labels and plot lines are coloured to reflect their position in the oldest
ranking. The mix of the label colours along the right y-axis shows that the complexity of
technologies has varied substantially over the time period.

In the upper third of the ranking are domains that have maintained their leadership,
namely Enabling Technologies for GHG Mitigation [8.3], Environmental Monitoring [1.5],
and Rail Transport [6.2], as well as technological fields that have caught up, in particular
Road Transport Technologies [6.1], Nuclear Energy [4.4], and Technologies for the pro-
cessing of minerals (used in industrial production, e.g. cement, glass) [9.4]9. All these
instances of technologies that have worked their way up the ranking speak to the extent
to which new and advanced capabilities have kept pouring into the attendant fields since
the 1970s. In contrast to these, there are domains that have lost prominence, for example
Supply-Side Technologies for Water Availability [2.2], or Enabling Technologies for Green-
house Gas Mitigation [9.8]. Further notice that, on the one hand, transitions from low- to
high complexity can be rather abrupt, as in the case of Road Transport Technologies [6.1]
while, on the other hand, movement along the ranking need not be monotonic as shown by
Supply-Side Technologies for Water Availability [2.2] and Energy Generation From Fuels
Of Non-Fossil Origin [2.2], which display a highly variable degree of complexity. On the
whole, this ranking resonates with empirical studies on the life cycle of green technology,
whereby established fields like Renewable Energy Generation [4.1] are in the bottom third
reflecting how mature the attendant knowledge base is and, relatedly, how ubiquitous is
that technology. In contrast, Capture/Disposal of GHG other than Carbon Dioxide [5.2]

8https://data.worldbank.org/indicator/EN.POP.DNST (Last access: 28 January 2019)
9The full list of ENV-TECH Green Technologies codes and labels is available on Table 3 in the

Appendix.
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Figure 4: Time evolution of the Complexity Ranking of green technologies (5-year time-
windows). Higher ranked (more complex) technologies at the top.

is still at relatively early stage of development, and thus exhibits higher complexity and
less ubiquity (see Barbieri et al., 2018).

Figure 5 builds on the former technology ranking and plots the time trajectory of all
the countries included in the analysis along the fitness ranking. Similar to Figure 4, each
observation refers to 5-year intervals starting in 1970, country labels are coloured according
to the corresponding fitness ranking in the first window and countries with higher fitness
are displayed at the top. Notice that, contrary to technologies, country ranking positions
are more stable and that where they take place changes in ranking are less abrupt. This
is intuitively plausible considering that while imitation in mature fields of technologies
can lead to quick catching up by capability-poor countries, the global set of capabilities
that defines a country’s technological reach is the result of a long-term accumulation
process, which can therefore generate some inertia in the fitness values and the relative
performance. Two notable exceptions in our sample are Portugal (PT), the United Arab
Emirates (AE) and Panama (PA), all of which display relatively high variability in the
central time periods with the first two leaping to the top all at once between 2000–2004
and 2005–2009 and the latter stabilizing at the bottom. Further notice that the relative
stability of the green fitness ranking does not mean that no long-term trends can be
observed. For example, Israel (IL) and the United States of America (US) start high up
in the ranking and constantly drop, while China (CN) gradually reaches the top. Note in
passing that some lower fitness countries are not always present in the plot, but appear
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Figure 5: Time evolution of the green fitness of countries (5-year time-windows). Higher ranked
(higher fitness) countries at the top.

only when their first green patents are recorded.

4.2 Parametric approach

In this section, we explore the relationship between environmental-related technological
complexity and income distribution by means of parametric regression analysis. The em-
pirical strategy investigates whether there is a significant correlation between countries’
green fitness and income inequality over the period 1970–2010. Our dependent variable
is country green technological fitness, described in Section 3. Further, we articulate the
relationship between country green fitness and income inequality by assessing whether the
results hold for the entire spectrum of technologies or the finding is peculiar to green tech-
nologies. The main independent variable is within-country income distribution measured
using the Gini coefficient or the decile ratios 90:10, 80:20, 70:30 and 60:40. As mentioned,
given the low pace at which inequality evolves over time (Quah et al., 2001), we employ
5-year time windows. The model we estimate also includes country fixed effects and a set
of controls such as population density, per capita GDP, and a measure of schooling (i.e.
the percentage of population with tertiary literacy). Finally, country-specific time trends
are included to control for unobservable variation over time and across countries.

Table 1 shows the results of the model estimation. The main finding is that there is
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a negative and significant association between a country’s income inequality and green
fitness. This means that countries with higher levels of inequality reduce the incentives to
develop more complex capabilities related to green technology. According to the literature,
higher complexity is associated with higher costs and uncertainty in the development of
new technologies. In this context, inequality plays a pivotal role by exacerbating the
expected returns from innovative activities. Such an association is confirmed when we
use the Gini index and the income distribution ratios 90:10 and 80:20 as a proxy for
income inequality. It is worth noting that this result takes into account the intensity of
the inventive activities in each technological domain and the complexity of technological
fields.

Table 1: Parametric regression results - Green technology fitness

(1) (2) (3) (4) (5)

Gini (ln) -8.748**
(3.629)

90:10 -0.126**
(0.0492)

80:20 -0.424***
(0.125)

70:30 -4.143
(3.192)

60:40 -7.929
(8.894)

GDP pc 2.956*** 2.920*** 2.892*** 2.791*** 3.012***
(0.698) (0.888) (0.860) (0.962) (0.915)

Pop Density -0.0607 0.00424 -0.0158 -0.0182 -0.0493
(0.0756) (0.205) (0.185) (0.203) (0.198)

Schooling 0.0736 -0.0413 0.0616 0.00539 0.0712
(0.134) (0.212) (0.125) (0.222) (0.161)

Country FE Yes Yes Yes Yes Yes
Time trends Yes Yes Yes Yes Yes
R2 0.593 0.614 0.632 0.601 0.606
N 273 199 207 198 207
Notes: Dependent variable is mean Green Technology Fitness per country per
year. Country fixed effects and time trends are included in the model. Robust
standard errors in parenthesis. * p < .1, ** p < .05, *** p < .01

Further, we explore whether this association holds also for all types of technologies
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grouped together. Table 2 shows that the coefficients of the inequality measures are not
statistically significant when we consider all the technologies developed in a specific coun-
try. This result suggests that inequality might act as a barrier especially when green
technological capabilities are concerned, and this effect might be due to the higher com-
plexity that characterises this group of technologies. However, a non-linearity may affect
these findings. In the next section we explore these patterns through a non-parametric
approach that enables us to observe this relationship at each level of inequality, green
fitness, and GDP per capita.

Table 2: Parametric regression results - Total technology fitness

(1) (2) (3) (4) (5)

Gini (ln) -6.074
(4.784)

90:10 -0.0423
(0.0579)

80:20 -0.135
(0.143)

70:30 4.393
(5.650)

r60:40 9.383
(12.67)

GDP pc -0.582 0.800* 0.601* 1.282 0.789*
(1.051) (0.459) (0.334) (0.908) (0.458)

Pop Density 1.153 -1.012 -0.982 -1.081 -1.012
(1.015) (0.944) (0.917) (1.010) (0.948)

Schooling -0.592 0.322 0.215 0.345 0.149
(0.503) (0.415) (0.306) (0.444) (0.281)

Country FE Yes Yes Yes Yes Yes
Time trends Yes Yes Yes Yes Yes
R2 0.184 0.618 0.621 0.620 0.622
N 280 204 213 203 213
Notes: Dependent variable is mean total technology Fitness per coun-
try per year. Country fixed effects and time trends are included in the
model. Robust standard errors in parenthesis. * p < .1, ** p < .05,
*** p < .01
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4.3 Non-parametric approach

In this section, we explore the relationship between inequality and green technology fitness
using a non-parametric approach. Figure 6 depicts a graphical tool to visualise qualita-
tively the joint relation between green technological capabilities as proxied by green fitness,
GDP per capita, and the proposed measures of income inequality (Gini coefficient, the
90:10, 80:20, 70:30 and 60:40 income decile ratios). In particular, each panel of Figure
6 represents a colour-map of the relation between income inequality on the x-axis, the
logarithm of GDP per capita on the y-axis, and a non-parametric estimate of the green
fitness ranking on the z-axis. The values of the latter are captured by different shades of
green such that the darker the green the higher the fitness. To build this figure, we pool
all the countries and years in our panel and take 5-year moving averages of the aforemen-
tioned variables to ensure coherence across the data. The colour-maps are obtained via a
multivariate Nadaraya-Watson regression (Nadaraya, 1964), a continuous non-parametric
method, with a Gaussian kernel. In practice, we estimate the conditional expected value
of the dependent variable, the green fitness ranking, given the independent variables, GDP
per capita and income inequality, by calculating locally weighted averages of the green
fitness ranking, where the weights are Gaussian kernels.

Figure 7 shows the standard errors of the Nadaraya-Watson means: herein, the darker
areas correspond to a standard error of 4% or above, while the white ones to a standard
error of 2% or less. To allow comparability, the iso-levels of the green fitness ranking
estimations are superimposed on the plots in Figure 6. In the upper portion of the
plot, irrespective of their income inequality level, countries with high levels of per-capita
income display generally high levels of green fitness. This is not surprising considering
that high-income countries are more likely endowed with more developed capabilities,
therefore income inequality is likely to constitute less of a barrier to producing knowledge
in complex technologies.

An interesting feature of the plots in Figure 6 is the diagonal movement of colour,
which hints at an interplay between income inequality and GDP per-capita in contribut-
ing to the green fitness ranking. The figures suggest that there is a threshold of GDP
per-capita below which it is unlikely that a country will be able to develop a sufficient
number of complex technologies to obtain high green fitness. Countries located in the
upper left corners of the plots in Figure 6 are characterised by high GDP per capita and
low income inequality; they are therefore expected to achieve the highest positions in the
green fitness ranking. Low income inequality lowers such threshold and allows also coun-
tries with intermediate levels of per capita income to develop the capabilities necessary
to increase their capacity to innovate in relatively complex green technologies and thus
achieve intermediate levels of green fitness.

Put otherwise, a country’s wealth might not be a barrier to developing advanced com-
petencies for environmental innovation insofar as income inequality is not too high. This
offers a qualitative hint at the fact that a more equal distribution of income matters for
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Figure 6: The three-dimensional relation between different measures of income inequality –
namely the logarithm of Gini index, and the 90:10, 80:20, 70:30 and 60:40 income decile ratios
– on the x-axis, the logarithm of GDP per capita on the y-axis, and the ranking of green fitness
on the z-axis. Each colour map represents the expected value of green fitness given the income
inequality measure and GDP per capita and is obtained with a non-parametric Nadaraya-Watson
kernel estimation by pooling all countries and years in our database.
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unleashing innovation capacity among both low- and mid-level income countries. Hence,
high income inequality appears to be a barrier for innovation capacity among both low-
and mid-level income countries. Notice that the evidence is consistent when we take as
measures of inequality the intermediate income decile ratios, the top and bottom ratios,
and the Gini coefficient. The only apparent exception is the 90:10 ratio case; however,
looking at the standard error of the estimation in Figure 5, we see that the significant
regions of the green fitness ranking estimation are placed only in the left and in the upper-
middle quadrants of the r90:10-log(GDPpc) plane, where the colour pattern is consistent
with that of the other inequality measures. This suggests that the dark green region in
the upper right portion of the 90:10 graphs are mostly artefacts of the non-parametric
estimation technique.

To provide some context on these maps, we superimpose on the generic terrain of
Figure 6 the coloured trajectories of Brazil, China, Portugal, the Netherlands, and the
US (Figure 8). The trajectories are built selecting three points in time – the initial, middle
and final observation of the country in question – and each trajectory is composed of two
arrows pointing in the direction of time. By allowing to observe the simultaneous effect of
income per capita and inequality on green fitness, this plot complements the descriptive
analysis of the country rankings in the previous subsection, where the performance in green
innovation of emerging and advanced economies has been commented on. As expected, the
combined growth of income per capita and the decrease of inequality from the starting to
the final point in time lead to an increase in green fitness. Only the US (in orange) departs
from this behaviour: while remaining among the top green innovators, its Gini index
increases over time. Indeed, for the US, which has already developed a very advanced
set of capabilities and is able to produce the most complex green technologies, inequality
does not seem to have a detrimental effect on innovative capacity.

5 Concluding remarks and the way ahead

The objective of this paper was to analyse whether income inequality may act as a barrier
to environmental innovation. These two global challenges stem from different sources and
manifest themselves in different ways, but are arguably tightly connected. Indeed, they
exhibit similar incidence across space, whereby countries that are most exposed to the
perils of environmental degradation are also among the poorest, and often suffer high
levels of income inequality. Innovation, it has been argued, is the other main channel
that links together environmental sustainability and inequality. Empirical evidence indi-
cates that progress in technology is a key tool, albeit not the only one, to preserve the
environment while maintaining high levels of economic performance. However, research
has also convincingly demonstrated that innovation can be a trigger of inequality which,
eventually, undermines the ability to develop new technologies. Closer insights into how
inequality and the environment interact can inform policymakers and other stakeholders
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Figure 7: Estimation errors of the green fitness colour-maps in Figure 6. The plots are built with
the same data as Figure 6. Two layers of information are represented in this figure. (1) In the
black and white scale, the standard error of the green fitness ranking mean estimated through a
the Nadaraya-Watson regression with Gaussian kernel. White indicates a standard error of 2%
or less, and black a standard error of 4% or more. (2) In the green shades, the iso-lines of the
green fitness ranking levels (lowest in light green, highest in dark green). The plot is obtained
by pooling all countries and years comprising our database.
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Figure 8: Gini index colour map with country trajectories. We superimpose on Figure 6 the
trajectories of Brazil, China, Portugal, the Netherlands, and the US in the Gini index-GDP per
capita plane. The arrows represent the initial, middle and final observation of the country in
question, and point in the direction of time.
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involved in the design and the implementation of sustainable development.
While most literature insists on the factors that facilitate the emergence of new tech-

nology, we have addressed the little-explored issue of country specific circumstances that
act as barriers to the pursuit of environmental innovation. In particular, we focus on the
knowledge bases of countries to explore the extent to which domestic technological capa-
bilities rely on complex green technologies. In so doing, we acknowledge the heterogeneity
of green technology as regards both the domains of know-how and of application. To this
end, we relied on economic complexity approaches to account for the diverse nature of
technological specialisation and for how this distributes across different institutional do-
mains like countries. In addition, the paper contributes to the debate on the linearity of
the relationship between inequality and technological development. To do so, we employed
both parametric and non-parametric approaches to delve deeper into this relationship at
different levels of inequality and GDP per capita.

Taking advantage of the nested structure of green patenting data we apply a complexity-
based measure, the EFC algorithm, to define a fitness measure of the green technological
competitiveness of each country. Such an approach affords the opportunity to study
the green technology portfolios of each country, and therefore to look beyond measuring
patenting intensity in isolation. In so doing we gain detailed information on the global
structure of country-technology interactions and are able to for the qualitative compo-
sition of inventive activities. Moreover, this method is consistent with the notion that
innovating in any domain requires broad ensembles of specific and generic know-how as
well as the ability to recombine these inputs. In short, innovation capacity goes hand in
hand with the country’s development path.

Of course, our analysis does not exhaust the potential applications of complexity-
based measures to relevant questions in the field of innovation. In fact, our patent-based
green fitness offers a rich yet synthetic measure of the degree of technological development
of each country, and leaves interesting questions open to investigation, such as whether
countries with similar degrees of fitness tend to follow similar paths over time and whether
the mix of technologies observed in a country at a given point in time lead preferentially
toward the expansion in a well-defined set of new fields. Additionally, based on the export
specialization profiles of countries, the EFC metric has already proven to be a valid tool in
inferring a country’s manufacturing capabilities and in linking its potential of growth with
its productive structure. Therefore, our measure of green technological fitness can provide
additional information on the trajectories of national innovation systems, and, if put into
relation with the export fitness, it could provide an even more nuanced representation of
growth and development possibilities.

The empirical analysis yields two main findings. First, income inequality exhibits sig-
nificant negative correlation with countries’ green innovation capacity. This suggests that,
on average, the development of more complex green technological capabilities is mainly
concentrated in countries characterised by low levels of inequality. A possible explanation
can be extrapolated from the literature on the determinants of green innovation. First,
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higher complexity also entails higher costs and uncertainty in the knowledge generation
process that characterises exploratory activities. Second, high inequality is detrimental
to innovation since the externalities from the rich, pioneer consumers are lower. Combin-
ing these two aspects, we point out that the unequal distribution of income lowers the
benefits arising from the development of complex technological capabilities. By explor-
ing this relationship through a non-parametric approach, we shed light on the non-linear
relationship between inequality and innovation. Our conjecture is that this relationship
differs according to the levels of inequality and the countries’ wealth.

The second finding stems from the non-parametric approach: for high income coun-
tries, low levels of inequality are associated with higher capabilities in the development of
more complex green technologies. In addition, increasing the level of inequality does not
appear a barrier to green technologies. Instead, a moderate level of inequality facilitates
specialisation in more complex technological fields. This is ascribed to the pioneer con-
sumer effect. Moreover, low income inequality makes it possible also for countries with
intermediate levels of per capita income to develop the capabilities necessary to increase
their capacity to innovate in relatively complex green technologies. This indicates that
a more equal distribution of income matters for unleashing innovation capacity among
both low- and mid-level income countries. Hence, high income inequality appears to be a
barrier to innovation capacity especially among low- and mid-level income countries.

While we claim that the present study contains several elements of originality, we
are also aware that the issues at hand are indeed complex and that the limitations of
the present analysis are a compass for further research. First, the recurrent caveat in
innovation studies: we have only considered inventions that are captured by patents
and, while technology is touted to be a major driver of the transition to sustainable
economies, it is certainly not the only one. Future research could build on our effort
at mapping innovation capabilities and develop more specific narratives of the manifold
transformations that are at play. Second, climate change is a global phenomenon with
local manifestations, and regional or city-level variation is crucial. Third, we account for
domestic capabilities only indirectly, and do not delve into the skills-innovation nexus
as mediated by the institutional dynamics of the attendant labour markets. Fourth,
we have not explicitly accounted for trade as a channel for green technology diffusion.
Finally, we focused on income inequality but remain aware of the manifold forms of
inequality that matter for environmental issues. Unequal access to environmental goods,
different degrees of exposure and vulnerability to environmental risks, and uneven effects
of environmental policies are other important, if hard to measure, forms. While we are
aware of these limitations, we also hope that the present paper will inspire future research
on this compelling agenda.
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Appendix

Code 1-Digit Class Description 2-Digit Class Description

1 Environmental Management

1.1 Air pollution abatement
1.2 Water pollution abatement
1.3 Waste management
1.4 Soil remediation
1.5 Environmental monitoring

2 Water-related adaptation technologies

2.1 Demand-side technologies (water conservation)
2.2 Supply side technologies (water availability)

4 CCMTs related to energy generation, transmis-

sion or distribution

4.1 Renewable energy generation
4.2 Energy generation from fuels of non-fossil origin
4.3 Combustion technologies with mitigation potential (e.g., Using fossil fuels, biomass, waste,

etc.)
4.4 Nuclear energy
4.5 Efficiency in electrical power generation, transmission or distribution
4.6 Enabling technologies in energy sector
4.7 Other energy conversion or management systems reducing GHG emissions

5 Capture, storage, sequestration or disposal of

greenhouse gases

5.1 CO2 capture or storage (CCS)
5.2 Capture or disposal of greenhouse gases other than carbon dioxide (N2O, CH4, PFC, HFC,

SF6)

6 CCMTs related to transportation

6.1 Road transport
6.2 Rail transport
6.3 Air transport
6.4 Maritime or waterways transport
6.5 Enabling technologies in transport

7 CCMTs related to buildings

7.1 Integration of renewable energy sources in buildings
7.2 Energy efficiency in buildings
7.3 Architectural or constructional elements improving the thermal performance of buildings
7.4 Enabling technologies in buildings

8 CCMTs related to waste water treatment or

waste management

8.1 Wastewater treatment
8.2 Solid waste management
8.3 Enabling technologies or technologies with a potential or indirect contribution to GHG miti-

gation

9 CCMTs in the production or processing of goods

9.1 Technologies related to metal processing
9.2 Technologies relating to chemical industry
9.3 Technologies relating to oil refining and petrochemical industry
9.4 Technologies relating to the processing of minerals
9.5 Technologies relating to agriculture, livestock or agroalimentary industries
9.6 Technologies in the production process for final industrial or consumer products
9.7 Climate change mitigation technologies for sector-wide applications
9.8 Enabling technologies with a potential contribution to GHG emissions mitigation

Table 3: 1 & 2-digit ENV-TECH codes and labels.
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