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Abstract

In this paper, we disentangle the changes that the rise of Artificial Intelligence Technologies

(AITs) is inducing in the semiconductor industry. The prevailing von Neumann architecture at the

core of the established technological trajectory of chip production is struggling to improve prod-

uct performance for a wide range of applications, and the novel AI segment only aggravates this

challenge. The revealed ine�ciency of the von Neumann architecture in the execution of AI–based

solutions launched innovation e↵orts from hardware producers in two directions: (i) to design a

novel processor architecture for the needs of AI and (ii) to integrate this processor onto system–on–

a–chip (SoC). Chip development is guided by three essential characteristics of chips performance

— processing speed, flexibility, and energy e�ciency — that at the same time are the focal points

of demand’s interest. We argue that flexibility, hardware’s ability to execute a variety of software,

remains a crucial factor of a chip’s performance; an ability that novel processors for AI lack. Under-

standing the importance of flexibility, producers already invest in the second direction of creating

heterogeneous computing systems that comprise classic and novel processors. We rationalise the

unfolding situation in the semiconductor industry with a simple model formalising the mechanism

of demand distribution based on a chip’s characteristics. Two possible scenarios emerge from the

model: (i) the emergence of a new platform chip appealing to a major share of demand; (ii) the

failure to address a broader set of application markets with one chip leading to the fragmentation

of the semiconductor industry into submarkets with dedicated chips. The convergence to one of the

proposed scenarios is conditional on (i) technological progress, (ii) advances in the software domain

and its compatibility with hardware, and (iii) the structure of demand’s preferences.

Keywords: semiconductor industry; Artificial Intelligence; architecture; model of computation;

technological trajectory
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1 Introduction

The semiconductor industry has been an upstream supplier of computing devices to a wide range

of market segments and during its history has faced various crises. Despite being not new to

hurdles, the industry is now facing a novel, fundamental challenge: chipmakers are exploring

new ways of organising computation on a chip to respond to recent breakthroughs in Artificial

Intelligence (AI); AI creates a demand for computing devices directly and indirectly induces other

markets that adopt AI solutions to demand changes in chips as well. A profound discrepancy

resides in the mismatch between the nature of modern AI algorithms and the organisation logic

of conventional hardware. Over the decades, and since its establishment as a solid field in the

1950s (McCarthy et al., 1955), AI has been developing mostly as a scientific experiment with its

own successes and failures rather than a commercial technology with large potential. For this

reason, AI had a small weight as an application segment for the semiconductor industry, and

the discrepancy recently exposed appeared at such large scale for the first time. Nevertheless,

the status of AI is changing, AI managed to gain traction and now is being experimented with

in numerous markets (for example, (Agrawal et al., 2019)) so that its developers are winning the

so–called ‘hardware lottery’ (Hooker, 2020); there occurred a swarm of new chips that embody

alternative architectures capable of executing AI algorithms. Such exogenous ‘shock’ exerts

pressure over the established technological trajectory and is poised to introduce changes in the

semiconductor industry. In this paper, we analyse this technological discontinuity and how it

layers up on the mechanisms and forces at work in the semiconductor industry. On the basis

of this analysis we address the question of which product configuration might characterise the

next phase in the semiconductor industry life cycle as a result of this shock.

Our study contributes to a number of literature strands. A first one is the nascent economics

of AI (Goldfarb et al., 2019), as we analyse the impact of AI on product design and innovation–

related decision making in a particular industry. A second contribution is to the literature

on the economics of technological change, industrial dynamics, and systems of innovations,

as we study the forces that support and contest the technological trajectory (Dosi, 1982) of

chip production (Steinmueller, 1992) and the factors driving the evolution of the semiconductor

industry (Malerba et al., 2008; Brown & Linden, 2011; Adams et al., 2013). A third domain

we build upon is the research on platform products (Baldwin & Clark, 2000), in particular

that focused on the computer industry (Bresnahan & Greenstein, 1999) and on the strategic

management of semiconductor firms (Burgelman, 2002; Gawer & Henderson, 2007). A fourth

strand we contribute to is the economics of network products and software as a supporting

service (Church & Gandal, 1992; Chou & Shy, 1993). We build our line of argument drawing

from the AI and computer science literature (Russell, 2019; Hooker, 2020) as well as from that

on computation theory and integrated circuits design (Borkar & Chien, 2011).

To expose the discrepancy currently forming between capabilities of chips and their required

performance, in Section 2 we put together alternative ways of organising computation in a

program and the corresponding logic of hardware. This creates a framework that allows un-

derstanding the hardware and software domains and their interrelation and helps to highlight

the radically di↵erent nature of Artificial Neural Networks (ANNs). In Section 3, we proceed

with an overview of established and novel chip architectures and highlight their strengths and
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disadvantages in application to di↵erent tasks. Comparing di↵erent architectures, the important

characteristics of a chip’s performance become evident: (i) processing speed, (ii) flexibility, and

(iii) energy e�ciency. Together, these characteristics form a trilateral technological frontier that

serves as a benchmark for a chip’s performance and guide design decisions. We briefly discuss

several directions that chip producers can act upon by introducing improvements in chips design,

and the trade–o↵s that might occur. We conclude that the AI shock at the moment induced

two kinds of innovation e↵orts: (i) the design of a novel processor architecture for the needs

of modern AI (especially ANNs), and (ii) the integration of this processor inside a computing

system. Section 4 rationalises the unfolding situation accounting for the technological and eco-

nomic factors that a↵ect product development in the semiconductor industry. First, in Section

4.1 we introduce a stylised model of demand distribution based on the elasticity of demand

with respect to hardware’s flexibility (approximated with the variety of supported software) and

processing speed and energy e�ciency combined. Building on the analysis conducted in the

previous parts, Section 4.2 outlines two scenarios for the evolution of chips and provides some

arguments in support of each of them. In Section 5, we place our analysis in context by dis-

cussing how the forces and tensions we unpacked in our study align with (or di↵er from) those

identified in related literature. Finally, Section 6 concludes.

2 The Computation Framework for Neural Networks

We perform a continuum of tasks with the help of computers. In the words of Baldwin &

Clark (2000), “Computers are fascinating, interesting, and delightful to human beings because

they are complex. Most of us are not especially intrigued by their raw speed or low cost. It

is the many things computers do, and the many di↵erent ways they can be configured, that

makes them interesting and useful. And it is the ability of computers to fulfill idiosyncratic,

even whimsical desires [. . . ] that causes these artifacts to surprise and delight us.” In less than

a century, computers have gotten firmly entwined with our lives, and computing became an

ubiquitous activity. Any program that performs a task has an algorithm that in a structured

manner leads to the achievement of a goal. In general, any program is a virtual machine that

is ran on a physical machine — a computer. Basically, what computers facilitated people to

do is the translation of regular tasks and activities into algorithms. Thus, if the performance

of a task is a problem, an algorithm is its solution, regardless of the nature of a task — being

it writing a document, 3D–modelling or calculating a celestial trajectory. There exist many

ways of performing a task, and so do many algorithms. As a solution for a task, an algorithm

can be characterized by the level of e�ciency with which it achieves the goal. A first intuition

would suggest time and probably memory use as inputs that an algorithm needs to deliver the

result. However, to get a measure of the e�ciency “it is necessary to have at hand a method

of measuring the complexity of calculating devices. . . ” (McCarthy et al., 1955, p.2). In other

words, the e�ciency of a task’s solution should be assessed based on joint performance of an

algorithm (software) and the device on which the computation occurs (hardware); the design

of hardware can take over part of task’s complexity so that algorithm remains simple or vice

versa. The e�ciency issue applies to any algorithm–device tandem and its importance grows

together with complexity of a task. This fundamental complementarity between the hardware
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and software domains is key to understanding the impact that Artificial Intelligence Technologies

(AITs) can have on chips.

Programming Paradigms. Algorithms can approach a task in di↵erent manners, called

programming paradigms. A paradigm conveys the organisation logic of computations and their

execution. There are many programming paradigms — probabilistic, event–driven, automata–

based, etc. — but in our analysis we employ two of them as they represent higher–level abstrac-

tion approaches to achieving a given task’s goal. The first one is the imperative or procedural

programming paradigm, that is concerned with the control over the flow of algorithmic instruc-

tions that lead to a desirable outcome. Thereby, an imperative algorithm is an explicit algorithm.

The second programming paradigm is declarative, that specifies the desirable outcome but not

the procedure that leads to it; hence, the algorithm can be implicit. The two approaches ex-

hibit di↵erent level of e�ciency when applied to di↵erent tasks. To illustrate this statement, we

consider two examples: the first one is a simple arithmetic task of the kind ‘get 8 using only 2s

and basic arithmetic operations’; the second is a task of object detection in an image.

In the first task, when the arithmetic rules are well–defined the correct solution can be

obtained easily with an explicit imperative algorithm. Now let’s imagine that the arithmetic

rules are unknown and hence an explicit algorithm as well. Thus, a program can, for example,

add before multiplying. In this case there are multiple answers (and the more numbers involved,

the more answers are possible). A declarative approach to the task by setting a specific number

as an answer would deem other answers incorrect and hence narrow down the set of solutions (i.e.

algorithms) to the ones that lead to the correct answer. This approach won’t necessarily infer

arithmetic rules but can approximate them. Obviously, for this task the imperative approach

is much more e�cient than the declarative one, as it provides a unique and correct answer in

explicit steps.

Now consider a problem of object detection in an image in the context of autonomous driv-

ing. To classify an object, for example, as a pedestrian, it is necessary to identify a minimum set

of features that characterises it, codify these features and their variation, and write an algorithm

that evaluates the correspondence and ‘decides’ upon classification. In the simplest case when

one feature would unilaterally identify one object, the minimum number of features to pre–

program would be equal to number of objects that must be classified. Sometimes, classification

can be reduced to the e↵ective minimum of categories to distinguish by making the categories

broader, for example, living creatures, mobile non–living obstacles, immobile non–living obsta-

cles. However, the broader the category the larger the variance within a particular feature; if the

feature used to classify an object as a living creature is ‘presence of a head’, the variety of heads’

shapes, sizes and textures must be accounted to avoid misclassification into other categories.

Depending on the task, the number of objects and their features can vary: more fine–grained

classification is required for a high stake loss function (Russell, 2019) such as in autonomous

driving. As the number of objects or/and features grows, the task of object detection quickly

becomes impractical or even intractable to approach with an explicit, imperative algorithm. In

contrast, the declarative approach that allows for implicit algorithms can handle this problem

much better as it doesn’t need to specify features and their correspondence to objects; instead,

it can check whether or not the classification of an object is correct.
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The comparison of the two programming paradigms on these example tasks shows two im-

portant aspects: (i) e�ciency varies between approaches depending on the task to be executed,

and (ii) the construction of an explicit algorithm requires some degree of certainty1 that de-

creases with the complexity of a task. This is what concerns the algorithms’ part of e�ciency

and overall computability. As pointed out earlier, the way in which computation is organized is

fundamentally bound to the design of the computing hardware, and the two have implications

for one another.

Models of Computation. The e�ciency of a given computing technique should be esti-

mated in connection with the device that performs it. Therefore, it is necessary to consider how

the structure of a given physical device has been designed to optimise the joint performance of

the device and the number of virtual machines executed on it. The theoretical concept of model

of computation precedes the physical implementation of a computing device. In the theory of

computation, a model of computation is the conceptual framework that describes how the result

of an algorithm is computed given the available components of a computing device and their

possible interactions. Not surprisingly, there are several models of computation implemented in

hardware.

The first and dominant model implemented in the vast majority of computing devices is

the sequential model of computation, initially proposed by Alan Turing and named after him as

Turing machine. Turing’s automatic machine performs computations by scanning one symbol

per unit of time from an infinite tape and applying one of its finite configurations (operations)

(Turing, 1937, p.231). This organisation of computation mirrors the imperative programming

paradigm: control flow programs are sequences of machine instructions with tags indicating

which data is needed to perform the respective instruction in a sequence. On the one hand,

sequential execution allows for an immense flexibility of manipulations over data, making feasible

the performance of complex algorithms, a property which Turing called universality. On the

other hand, performing a highly complex algorithm in a sequential manner might lead to an

impractically long time of execution.

The physical architecture of a computing machine corresponding to the sequential model of

computation is so–called von Neumann architecture. Due to the property of universality the

von Neumann architecture reproduces, this architecture implemented in a processor proved to

be fit for the execution of vast amount of virtual machines, allowing to address a large set of

tasks where the control flow logic of an algorithm is capable of achieving the goal. Put simply,

explicit algorithms with stepwise instructions resemble the way humans reason, which served as

inspiration for early computers. During the following decades, due to the positive reinforcement

loop in optimising the design of hardware and software, the set of tasks performed on the

sequential model of computation kept growing and chips with the von Neumann architecture at

the core gained a foothold as the dominant design (Suárez & Utterback, 1995). The development

of computers allowed applying them to increasingly complex tasks, pushing the frontiers of chips

performance to keep up with speed, memory, energy e�ciency and computability requirements.

In the same way with programming paradigms we discussed earlier on, an identical problem can

be solved on di↵erent models of computation with di↵erent e�ciency up to the extreme case when

1Here the notion of certainty refers to the size of search space in terms of the number of (i) laws or rules that
a task is subject to and (ii) objects that matter for a task.

5



one model of computation cannot ensure that an algorithm will convergence to the answer. When

an algorithm is implicit and hardly can be expressed in the form of instructions flow sequentially

changing the program’s state, the e�ciency of computing such algorithm on a Turing machine

can decrease until it almost disappears. In this case, another model of computation can be more

appropriate.

Concurrent models of computation as alternative to sequential models of computation do not

focus on the order of instructions; instead, the focus is shifted to other properties of algorithm

execution such as timing, parallelism or concurrency (Lee & Neuendor↵er, 2005). This class of

computation models is a good candidate for tasks where the algorithm is not a linear sequence

of instructions but a more distributed one, for example, various instantiations of embedded soft-

ware2. The problem with the concurrent class of models of computation is that it does not have

a universal abstraction, a sort of common denominator for this class, unlike the von Neumann

architecture for control flow, sequential class of models. Software that implements the concur-

rent computation model is an ad hoc solution for a specific hardware as opposed to the prevailing

general purpose, imperative software that can be installed on any machine. This implies that

chip design for the concurrent model of computation supports lower universality (heterogeneity

of tasks it can execute), and initial attempts to design such circuits can be tailor–made to a

specific family of algorithms and vice versa. To design and manufacture a circuit entails high

costs; hence, to return the investments there should be demand from the application markets.

Thus, the start of the development process of new circuits that implement the concurrent com-

putation model depends on (i) the technical feasibility of a common abstraction, (ii) the size

or/and number of markets that benefit from such hardware. For a long time concurrent mod-

els remained at the fringe of programming and the semiconductor industry, serving specialised

niches like avionics and the automotive industry or functions scattered across di↵erent industries

like signal processing or system modelling.

Neural Networks and AI. Everything changed when Artificial Neural Networks (ANNs)

re–entered the toolkit of AI techniques.3 Representing the dataflow programming paradigm (a

subclass of declarative programming) and the eponymous model of computation (a subclass of

concurrent models of computation), ANN became a revolution as it is the first program4 that

can operate as embedded software as well as conventional application software while having

many distinct uses. In terms of algorithm organisation, ANNs di↵er significantly from classical

programs. An ANN is a multi–layered directed graph. Every layer consists of nodes — instruc-

tions represented by some operations over data such as arithmetic functions, e.g. multiply–sum.

Connections between nodes in di↵erent layers are dependencies between the respective instruc-

tions: every possible path in a network is, in a sense, a sequence of instructions. This logic of

2“Abstractions that can be used include the event–based model of Java Beans, semaphores based on Dijkstra’s
P/V systems [29], guarded communication [30], rendezvous, synchronous message passing, active messages [31],
asynchronous message passing, streams (as in Kahn process networks[32]), dataflow (commonly used in signal
and image processing), synchronous/reactive systems [6], Linda [33], and many others.” (Lee, 2002)

3The birth of the connectionist approach to AI centered around ANNs dates back to the 1950s, with ground
work of McCulloch and Pitts on neuron–like structures capable of calculations (McCulloch & Pitts, 1943) and
Hebb’s theory of cell–assembly formation (Hebb, 2005).

4We refer to a program as a virtual machine. Boden (2016, p.4) defines virtual machine as “the information–
processing system that the programmer has in mind when writing a program”. Thus, in this paper we use the
term program in a broad sense to keep the text simple.
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organising and executing computations describes a dataflow programming paradigm, where the

flow of data defines which instructions to perform; when the data required for the execution of an

instruction is ready, this instruction can be initiated without waiting for other independent in-

structions. Di↵erently from the control flow logic realised in von Neumann architectures, where

data is stable and a sequence of instructions is applied to it, in dataflow computation models

instructions are stable and data floats among the instructions. There are several implications

for circuit design that can be derived from this description that we discuss in the next Section.

Being inherently parallel and distributed, ANNs represent implicit algorithms where the ini-

tial network is a template and Deep Learning (DL) is the tool to establish the ANN’s structure;

for traditional programs, the algorithm is a sequence of instructions while for ANNs it is a net-

work’s structure of connections. The nature of ANNs perfectly fits into the declarative paradigm

given the strong goal orientation and the absence of an explicit order of instructions. As already

discussed, a potentially large number of tasks is hard to approach with explicit algorithms ei-

ther because these algorithms are yet unclear or even if known they can be extremely ine�cient

solutions; the booming number of ANNs’ applications confirms this statement, showing the po-

tential of implicit algorithms. It is worth highlighting that the value of ANNs is twofold: for

some tasks it increases processing speed resulting in a tremendous reduction in execution time,

while for other tasks this is the only computable algorithm that can deliver result. Parallelism

is necessarily present in all ANNs solutions primary as a requirement for obtaining the result

rather than as an advantage in processing speed.

In general, AI is endemic to the declarative programming paradigm, with strong goal orien-

tation and implicit, exploratory algorithms to achieve it. For example, two important instances

of AI algorithms, the Logic Theorist (Newell & Simon, 1956) and ANNs both belong to the

declarative paradigm despite representing two distinct approaches to AI — symbolic and con-

nectionist respectively. The di↵erence between the two resides in the strategy used to reduce

the search space of options to converge to a goal: Logic Theorist used the rules of propositional

logic to cut o↵ irrelevant steps and navigate the convergence towards its goal — the proof of a

theorem; ANNs instead use purely data–driven optimisation of a loss function. In both cases,

the algorithms are exploratory on the side of how to achieve the specified goal. However, the

guiding tool of the convergence path for Logic Theorist is logic, a formalisation of explicit rea-

soning, hence the inference that Logic Theorist emulated is also explicit. Indeed, the program

was an attempt to prove theorems whose proof have been previously found through human ex-

plicit reasoning. Using logic as a guiding tool has its advantages, but the main problem is that

“[l]ogic requires certainly, and the real world simply doesn’t provide it” (Russell, 2019, p.40).

Taking stock of the discussion so far, given their many uses, ANNs have the potential to draw

enough attention to the concurrent class of computational models and consequently to trigger

and accelerate the development of its physical implementations. The increasing availability

of data contributes to the growing applicability of modern AI. As this viable alternative to

traditional programs gains traction, so does the exploration of the economic activities and new

business models employing or centered around AITs. One particular transformation that is the

focus of this paper is rejuvenation of the semiconductor industry technological opportunities with

the arrival of ANNs. This transformation starts not only with the challenge of addressing the
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technical properties of ANNs into hardware but also with the need for the industry to engage

in technological and strategic foresight estimating the costs and benefits of di↵erent product

configurations and industry scenarios.

3 Computational Models Shaping Hardware Architectures

As discussed in the previous Section, the architecture of a circuit is fundamentally linked to the

chosen model of computation. Despite the fact that several models of computation existed on

paper, the sequential one implemented in von Neumann architecture prevailed due to its univer-

sality (flexibility) and correspondence to the imperative programming paradigm. The dominance

was preserved through eight technical and economic crises that forced the semiconductor indus-

try to come up with and implement both incremental and radical innovations (Brown & Linden,

2011). The slowing down of Moore’s law as the main roadmap for the industry (Flamm, 2018),

as well as rising costs of design and fabrication have already influenced the industry in the past

but now seem to come back. Atop of these recurring crises, the novel dataflow architecture is on

the rise due to breakthroughs in AITs and threatens to fork the established technological tra-

jectory with von Neumann architecture at the core. Instead of catering the needs of instructions

flow mainly concerned with the speed up of computation, the emphasis in dataflow architectures

shifts to the energy–proportional and agile data routing. By design, the two architectures have

inherent advantages and disadvantages which we shall discuss in the next paragraphs where we

compare types of processors that implement these architectures. The first two types — scalar

and vector processors — are earlier products that represent the sequential model of computation

while the last two — array and neuromorphic processors — are recent implementations of the

dataflow model of computation.

3.1 An Overview of Architectures’ Variety

Scalar Processors. This type of processors performs one instruction over a scalar per one

clock cycle. It calls the data one scalar at a time to supply it for an instruction; then results

are recorded into memory after every instruction. This architecture is realised in Central Pro-

cessing Units (CPUs) and represents a physical implementation of the Turing machine with

both advantages and limitations. Communication with memory for every instruction allows

for the realisation of Turing’s universality principle: having heterogeneous instructions (divide,

multiply, AND, OR, etc.) in a sequence. However, the same feature creates the so–called von

Neumann bottleneck: the transfer of data back and forth from memory for every instruction

slows down processing speed (the movement along the instructions’ sequence), depends on the

bandwidth of the connecting channel, and significantly contributes to the energy consumption

of a chip. The true concurrency or parallelism is not implemented in this architecture and can

be only simulated through pipelining, a technique that allows performing concurrently a small

number of instructions by processing them in a cascade (so–called instruction level parallelism).

Vector Processors. The idea of realising parallelism in computation in order to increase

computing power was, however, already around since the 1970s. For example, the products of

Cray Research exploited the so–called vector processors. A vector processor consists of a large
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number of cores that are simpler than the few but more complex cores of a scalar processor.

A single instruction uses a vector as a unit operand (a batch of data): an instruction fetches a

vector from memory and assigns each vector component (scalar) to one of numerous cores to

execute this one instruction in parallel (data level parallelism).5 Today’s Graphics Processing

Units (GPUs) embody the same principle. Until mid–2000s vector processors haven’t been

widespread elsewhere except in supercomputers performing complex computations with large

arrays of data, and later in 1990s, with the rise of computer games for the purpose of graphical

rendering. GPUs consists of hundreds and even thousands of cores, however less complex and

independent than CPU cores. Clearly, the coordinated work of a larger number of cores demands

a higher energy consumption and the reorganisation of the computation process according to a

specific programming logic; it has to deliver a low idle rate, otherwise the usage of so many cores

is not justified (see Amdahl law6). Technically, vector processors are still von Neumann machines

replicating the same principle for each of its numerous cores: instructions in a sequence can be

di↵erent but this requires communication with memory for every one of them. This gives GPU

the same property of universality (although significantly less than CPU) but the von Neumann

bottleneck problem as well. For this reason, GPUs are very well–suited for massively parallel

repetitive computations.

The conventional use of GPUs was as a discrete device on a motherboard for graphical

rendering in computer games; however, with the rise of ANNs chipmakers started the integration

process of GPUs into a chip’s system in order to exploit GPUs as a new functional module for a

broader set of calculations. The set of functional modules that include CPU, co–processor(s) like

GPU, memory system, input and output units placed on a single silicon substrate constitutes

a so–called System–on–a–Chip (SoC). The integration of GPUs into SoC opened up a potential

to e↵ectively include GPUs in computing processes for more general calculations, rather than

just operating with graphical data. Using GPUs for general calculations was dubbed General–

Purpose Computing on Graphics Processing Units (GPGPU). Bundled together in a SoC, the

CPU performs orchestrating work while the GPU executes massively parallel calculations. The

main principle of CPU–GPU co–working can be generically described as follows: the CPU

dispatches an instruction and points at the related data to the GPU, and the GPU distributes

the data across its cores in order to then perform calculations over the data in every core at

the same time. The way of computing involving processors with di↵erent architectures is called

heterogeneous computing.

Competing producers developed their own frameworks7 allowing for heterogeneous comput-

ing. Examples are Nvidia’s Compute Unified Device Architecture (CUDA) and Fusion System

Architecture (FSA), started by AMD, that later transformed in Heterogeneous System Archi-

tecture (HSA) by the HSA Foundation, a consortium of companies including AMD, ARM, Qual-

5As an example, the multiplication of two vectors of length 20 in a scalar processor occupies roughly twenty
instructions to be executed in a pipelined manner while in vector processor the same multiplication executed in
parallel manner takes one instruction.

6Amdahl’s law describes potential speedup in performance as a function of number of PUs involved (Amdahl,
1967). The exploitation of larger number of PUs represents an “enhanced” or “faster” mode of execution. Thus,
said di↵erently,“Amdahl’s Law states that the performance improvement to be gained from using some faster
mode of execution is limited by the fraction of time the faster mode can be used”(Hennessy & Patterson, 2011,
p.39).

7The notion ‘framework’ refers to a complex of hardware, programming language and instruction set library.
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comm, Samsung, etc. In 2007, when Nvidia launched CUDA for GPGPU, it was not received

with much enthusiasm, certainly not enough to immediately induce a shift from conventional

CPU programming to GPU programming. However, Raina et al. (2009) demonstrated the po-

tential of GPU exploitation for ANNs’ applications. They showed a method of involving GPU

hardware into the training of an ANN which surpasses CPU performance in terms of time by

a factor from 12 to 72 depending on the ANN’s complexity. The joint success of ANNs and

GPUs arrived in 2012 from the field of image recognition through the ImageNet Large Scale

Visual Recognition Competition. The ANN AlexNet reached on average a 15.3% error rate in

classifying 1.2 million images into 1000 categories (Krizhevsky et al., 2012). Since then, ANNs

achieved substantial progress, performing some function above human level capabilities (see

Eckersley et al. (2017)). Overall, the use of diverse learning techniques with ANNs opens up

a path to the a↵ordable automation of non–routine tasks or improves performance in already

automated, routinized ones. Being tightly interconnected, the hardware domain has to respond

to accommodate and e↵ectively support this breakthrough in software domain that has multiple

and heterogeneous applications.

In sum, comparing CPUs and GPUs, GPUs compute in parallel but are more fit for massive,

regular, less sophisticated computations, consume more energy per calculation and are less

conventional to program in comparison with CPUs.

Array Processors. With the advent of ANNs, GPUs acquired a number of new markets;

GPUs were available at the time of ANNs’ development and contributed to the breakthrough

itself. It didn’t take long before chip development went further. The first serious challenge for

Nvidia’s GPU came from Google’s Tensor Processing Unit (TPU) in 2016. Google’s TPU is

a matrix (or array) processor which removes the von Neumann bottleneck from its cores by

creating a systolic array of Data Processing Units (DPUs). A systolic array of DPUs represents

a hard–wired network of homogeneous calculating units — meaning that every DPU implements

the same set of operations. Once data is uploaded from the memory it travels among DPUs and

is processed upon arrival within a DPU without being recorded intermediately into memory.

Thus, the TPU emulates the dataflow architecture8 introduced in Section 2. This makes TPUs

faster in processing than CPUs and GPUs, performing hundreds of thousands of operations per

clock cycle, but allows the execution of only regular instructions such as multiply–accumulate

in ANNs (Jouppi et al., 2017).

A TPU is more energy e�cient and faster in processing due to its dataflow architecture but it

has the shortcoming of being less flexible or universal in computation. Furthermore, data–level

parallelism realised in both GPUs and TPUs requires the representation of information in regular

form of vector, matrix or array in order to e↵ectively run programs (or parts of them) on this

hardware. Google improves its TPUs continuously, issuing a new generation twice as powerful

as the previous one roughly every year. However, the company has also refrained from the

commercial sale of TPUs, using them only in internal services and providing access to customers

through the cloud. In contrast, in early 2019, Intel unveiled Intel Nervana Neural Network

Processor (NNP) containing both CPU and tensor cores.9 More products from competitors

8Dataflow architecture is inherently parallel but not all parallel systems belong to the class of dataflow machines
(Veen, 1986).

9Nervana NNP is a modified 10th generation Intel Core processor (CPU) with, among other changes, replace-
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followed: Eyeriss 2.0 jointly designed by MIT and Amazon (Chen et al., 2019), Hanguang 800

from Alibaba Group, Inferentia and Trainium by Amazon and many others10. Lastly, Huawei’s

Ascend 910 chip comprises all three types of processors — scalar, vector and matrix — as its

functional cores within one SoC.

Neuromorphic Processors. Neuromorphic chips represent a radically di↵erent develop-

ment direction of computing devices. This novel architecture mimics the impulse–based synaptic

activity between neurons in the brain. Transistors wired together emulate a network of neurons

with electrical synaptic connections. Information is encoded as analog signal and flows across an

array of simulated neurons in form of electrical pulses. In e↵ect, the neuromorphic architecture is

an analog version of the dataflow architecture of an array processor. Examples of neuromorphic

chips are TrueNorth, a joint venture of IBM and DARPA under SyNAPSE program (Merolla

et al., 2014), the experimental neuromorphic chip Loihi from Intel (Davies et al., 2018) and the

hybrid (CPU and network of neurons) chip Akida from BrainChip. The distinctive feature of

such chips is extreme energy e�ciency, which makes the neuromorphic architecture a promising

competitor.

In sum, scalar processors have nearly exhausted their technological opportunities and have

lost their exclusive position in computation. Nevertheless, they remain an inalienable compo-

nent of a computing system. In turn, computing system are experiencing an upgrade through

experimenting with novel architectures for co–processor on a SoC. At the moment, specialised

processors alone do not deliver end–to–end solutions; they lack generality or flexibility and/or

commonly supported and well–developed frameworks to be used for general purpose program-

ming. CUDA for GPUs or TensorFlow for TPUs are examples of such frameworks, but they

are immensely smaller than the encompassing and versatile framework created over the decades

for CPUs. Overall, chips with di↵erent underlying architectures — controlflow sequential and

dataflow concurrent — do not seem to be competing technologies (Arthur, 1989) but rather

complements for a SoC (Baldwin & Clark, 2000). The development of a new component, its

subsequent integration in and reorganisation of the computation process induces architectural

innovations11 (Henderson & Clark, 1990) in a SoC. Examples of architectural innovations in-

clude techniques of interconnection among processing units (PUs) and memory (e.g. Nvidia’s

NVlink network–on–a–chip and hierarchical mesh of MIT’s Eyeriss) (Borkar & Chien, 2011;

Winter et al., 2010; Chen et al., 2019) as well as packaging techniques of chiplets (e.g. Intel’s

EMIB used in Nervana NNP, TSMC’s CoWoS used in Nvidia’s GPUs, Swarm communication

fabric from Cerebras) (Shao et al., 2019; Lie, 2019). Overall, the direction of innovation e↵orts

seem to “expand beyond the processor core, into the whole platform on a chip, optimising the

cores as well as the network and other subsystems” (Borkar & Chien, 2011, p.75)

Currently, the e↵orts of the semiconductor industry are directed at two targets: (i) to design

a novel processor architecture for the needs of AI which emerges from the class of concurrent

computational models, and (ii) to integrate this processor onto a SoC. Given that (i) is in

development, the first SoC resulting from (ii), though capable of supporting AI applications, are

ment of GPU cores by tensor cores.
10https://github.com/basicmi/AI-Chip
11Here we refer to the term architectural innovation suggested by Henderson & Clark (1990), that denotes a

specific type of innovation when the core function behind a technology is preserved while the components and
linkages among them undergo changes.
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still early and expensive versions whose components yet fall short with respect to the performance

characteristics that we discuss in the next Section 4.

(a) Dataflow (b) Controlflow

Figure 1: Top–30 global holders of patent families on chip’s architectures 2014–2016
Data: COR&DIP©v.2 IPC classes: (a) G06N 3/02-10, (b) G06F 15/76-82

The e↵orts in the development of new processors for the needs of AI are already visible in the

IPR system. Figure 1 shows the patenting activity of top–30 proprietors by type of architecture

over the period 2014–2016. The number of patent families filed globally on dataflow architectures

(Figure 1a) overcame controlflow architectures (Turing machines; Figure 1b) with a total of 786

patent families by 115 companies versus 405 from 77 firms respectively. Not surprisingly, in

both categories the top positions of the ranking are occupied by large international companies

such as Samsung, Alphabet, Intel, Qualcomm and Fujitsu, however with a long tail of smaller

companies especially in the case of the dataflow architectures. The intensive exploration of

the rich technological opportunities for processors embedding dataflow architectures by both

incumbents and startup companies creates a swarm of novel and distinct products. For instance,

Figure 1a includes photonic chips that use light to encode and transmit information instead of

electricity (i.e. IPC class G06N 3/067) such as one of the programmable nanophotonic processor

from Lightelligence (Shen et al., 2017).

However, there are already early signs of search for a more general or flexible dataflow archi-

tecture that might lead to a shake–out in product variety and to the emergence of a dominant

design in this class of processors. Sze et al. (2020) discuss in detail the challenges and criteria

for the design of Deep ANN (DNN) processors, claiming that “it is increasingly important that

DNN processors support a wide range of DNN models and tasks. We can define support in two

tiers. The first tier requires only that the hardware needs to be able to functionally support

di↵erent DNN models (i.e., the DNN model can run on the hardware). The second tier requires

that the hardware also maintain e�ciency (i.e., high throughput and energy e�ciency) across

di↵erent DNN models.” In sum, this statement calls for higher “flexibility to cater to a wide

and rapidly changing range of workloads” along with speed and energy e�ciency, navigating

innovation e↵orts in architectures’ design. Moreover, while in general welcoming novel architec-

tures to help advancing AI, Hooker (2020) goes even further in her discussion raising concerns

about the premature and costly specialization of novel hardware on ANNs. The dynamic nature

of the software domain manifests itself brightly in such an experimenting field as AI. Indeed,
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“[i]t is an ongoing, open debate within the machine learning community about how much future

algorithms will di↵er from models like deep neural networks”; however, “[h]ardware design has

prioritized delivering on commercial use cases, while built–in flexibility to accommodate the next

generation of research ideas remains a distant secondary consideration” (Hooker, 2020, p.7).

3.2 The Trilateral Technological Frontier

The two architectures we analysed mirror each other in their strong sides and disadvantages: the

controlflow architecture is concerned with speed of performance in first place and consumes most

of its energy on data movement from and to memory, while the dataflow architecture su↵ers from

lack of flexibility. From the supply side, these three characteristics of a chip’s performance —

speed, energy e�ciency, flexibility — form a trilateral technological frontier for the chipmakers,

guiding their innovation e↵orts. From the demand side, these characteristics constitute a chip’s

value and represent criteria of consumers’ choice. Figure 2a graphically represents the trilateral

frontier.

Energy E�ciency Flexibility/Heterogeneity

Processing Speed

(a) The trilateral frontier of chip production

(b) AMD’s representation of the frontier

Figure 2: Di↵erent representations of the trilateral frontier

The von Neumann architecture at the core of the majority of chips provided a su�cient level

of flexibility for many applications over 40 years, up until approximately year 2010. During

this period, the pursuit of miniaturisation strategy through scaling down the size of transistors

and, hence, doubling their number provided a 40% increase in speed while keeping the energy

consumption constant.12 In other words, it was possible with one move (transistor miniaturisa-

tion) to achieve improvements in two out of three characteristics, speed and energy e�ciency,

without harming the third one, heterogeneity. However, approaching atomic scale, transistor

size reduction cannot continue at the same pace. Introduced by Intel in 2011, 3D transistor

(Auth et al., 2012) instead of planar ones extended the technological trajectory of increasing

12Here we refer to Dennard scaling rather than to Moore’s law. Moore’s law is an empirical regularity relating
time and feasible density of elements on a circuit at minimum cost. Dennard scaling is a scaling law based on
formal physical principles (Dennard et al., 1974). It states that (i) reduction of a transistor’s dimensions by 30%
(to 70% of initial size) allows shrinking its overall area by 50% (0.72 = 0.49) hence twice as many transistors fit
in the same area on a die; (ii) consequently, the transistor’s channel length and interconnections reduce as well
by 30%, reducing the time of switching and transmission of current across the circuit — “0.7x delay reduction, or
1.4x frequency increase”; (iii) this allows lowering the voltage and hence energy consumption (Borkar & Chien,
2011, p.68)
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processing speed due to higher density of elements on a die approximately until 2025. Minia-

turisation of elements as a strategy concerns all architectures but eventually will not be further

possible, and producers have to decouple speed and energy and to look for other techniques to

push the frontier forward.

Relentlessly pressured by demand’s needs, the von Neumann architecture evolved in com-

plexity to encompass numerous functions in one chip. Miniaturisation provided more space on

a chip to implement not only more but also diverse elements, for example, heterogeneous logic

cores, on–die memory (cache), connecting channels. Heterogeneity and multiplicity of elements

made the architecture capable of performing a wide range of computations and, hence, algo-

rithms. However, the more complex the architecture the more it is flexible but also the higher

the costs of fabrication and the harder the management of its energy consumption. This sets

the flexibility aspect at odds with energy e�ciency. Indirectly, and returning to the discussion

on algorithms, flexibility makes it possible to run sophisticated algorithms, but it is not nec-

essarily associated with high speed of processing them; another emerging tension is therefore

between flexibility and processing speed. Implementing the principle of universality, i.e. flexi-

bility, controlflow architectures mostly concentrated on improvement of processing speed and on

keeping energy consumption under a constant envelope by miniaturizing elements and adding

new modules on a chip (Borkar & Chien, 2011). With the advent of AI, limits of flexibility of

the von Neumann architecture started to be seen: it can still run ANNs, but it is poorly–suited

for that. Instead, the dataflow architectures are fit for ANNs, but for the moment lack flexibility

both within (Sze et al., 2020) and beyond this type of algorithms e.g. embedded software. In

the meantime, a growing number of businesses (startups as well as incumbents) experiment and

adopt AI–based solutions, expanding the number of markets for AITs (see Sections 4.2 and 4.3

in Perrault et al. (2019)). Thus, flexibility is an emerging factor of the frontier and becomes a

vital concern of chip producers for either type of architecture as well as for the whole SoC.

In Figure 2 we put side by side two representations of the technological frontier. The first

one in panel 2a, constructed for this paper, and the second one in panel 2b is reproduced from

a 2019 AMD’s keynote address at a symposium on high performance chips held at Stanford

University (Su, 2019). AMD’s representation additionally places examples of chip types into the

same framework; number of applications on the horizontal axis represent flexibility or generality,

and performance/Watt on the vertical axis combines processing speed and energy e�ciency. As

expected, General Purpose Cores (CPU) have the widest support of applications but in terms

of performance/Watt falls behind GPGPU and Semi–Custom SoC (highly specialised circuits

tailor–made for a particular application, also called ASIC, e.g. TPU).

In sum, the trilateral frontier is a coordination mechanism between supply and demand for

the development of computing devices, both processors and SoC. On the one hand, each product

is characterised by these three metrics. On the other hand, there is a sheer number of application

markets that place di↵erent weights on each of the frontier’s characteristics. Therefore, the size

of demand for a particular product can be estimated as a share of markets for whom a product

matches the most with consumers’ preferences with regard to these characteristics.
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4 The Future of Chips: Fragmentation vs Platform

In previous Sections we discussed the changing equilibrium between models of computation

pulled by AITs and how this reverberates on the choice–set of chip producers for what concerns

the architecture of their products. In this section, we construct an economic framework for the

development process of a computing device. In this part under computing device we mean both

types of products — a processor and a SoC — referring to both as chip for convenience. We

proceed further in the formalisation of the dynamics unfolding in the semiconductor industry

and present a model of demand distribution driven by the value of a chip composed of the

frontier’s characteristics. The model stresses and illustrates the role of flexibility as a recently

aggravated criterion of consumers’ choice, and endogenises it through the software environment.

Finally, drawing on the analysis of the technological and economic factors and mechanisms, we

derive two scenarios for the evolution of the semiconductor industry that di↵er by the product

form at the core of each trajectory and point out issues for further discussion.

4.1 Modelling Chips’ Flexibility and Demand Distribution

We start with our novel point on the emergence of flexibility as a criterion of chips’ performance.

To do so, we include the software domain into the model. First, this allows for an indirect mod-

elling of hardware’s flexibility, approximated with the variety of programs a chip can support.

Second, this modelling choice reproduces the feedback loop between the software domain and

the semiconductor industry, in line with the argumentation of the supporting services approach.

The supporting services approach is also referred to as indirect network externalities, where

consumers are indi↵erent to the number of users of a product but are interested in the variety

of services that this product gives access to. We ground our model on the framework provided

in Shy (2011) and modify it for the case of chips by (i) modeling consumers’ utility through the

value of a chip, (ii) considering partial compatibility (Chou & Shy, 1993) and (iii) deepening

the interpretation of some parameters due to industry–specific features. In what follows, first

we outline the model and then we comment it, supporting the results with evidences from the

marketplace.

Demand Side. We assume that consumers are uniformly distributed over a unit interval and

indexed with x. Consumers can be considered as individuals or application markets. They buy

only one chip each, making a choice between a chip i and a chip j. Each of the chips can address

the frontier’s characteristics to some extent by employing di↵erent techniques we discussed in

previous Sections. For example, chip i can be either solely based on the controlflow architecture

with many homogeneous (scalar) cores and implement quasi–parallelism with the help of software

frameworks, or chip i can be mainly based on the controlflow architecture with some additional

tensor cores, like Intel’s Nervana, or it can represent a highly heterogeneous SoC comprising

several architectures such as Huawei’s Ascend 910. The parameter � is usually interpreted as

degree of product di↵erentiation. In the case of chips, the parameter � measures the disutility

from purchasing a chip that does not completely match with the type of computation it is bought

for by a consumer. For example, if a consumer needs a chip for mainly controlflow–organised

computations and only for a small share of dataflow computations, the parameter � reflects the
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reduction in utility from buying a non–perfect match to the consumer’s needs.

Ux =

8
<

:
V i � �x� pi if buys chip i

V j � �(1� x)� pj if buys chip j
(1)

Equation (1) represents the utility of a consumer from buying one of the alternatives, where

the chips’ values V i and V j are described as:

V i = EiSi (2.1)

V j = kEiSj (2.2)

The value of a chip relates to the frontier’s characteristics described in Section 3.2. The

rationale behind the E component is as follows: the processing speed or performance of a chip

is measured in operations per second. The energy e�ciency of a chip is basically its energy

consumption per unit of time, expressed in Watts (W ).13 Thus, we introduce the combined

e�ciency measure E obtained by dividing performance (in operations/s) over energy e�ciency

(in W ), merging two of the frontier’s characteristics into one. Note that the higher the energy

e�ciency, the smaller its measure inW . This or similar measures are indeed used in the industry.

For example, the recent analysis of Open AI on the amount of compute shown by modern AI

systems uses FLOPS/W 14 as performance measure which, it is argued, is also correlated with

FLOPS/$ (Amodei et al., 2019). Any of these measures fit into the model’s logic. The parameter

k is a scaling parameter that helps to express one chip’s e�ciency in terms of the other chip’s

e�ciency, i.e. Ei = k ⇥ Ej . For example, if k = 2, it means that chip i is twice as good as

chip j by either performing twice as many calculations with the same energy consumption or

consuming twice less energy to perform the same amount of calculations.

The remaining frontier’s characteristic, flexibility of computation, is more subtle to model.

From the discussion in Section 2 we know that programs can be addressed through either model

of computation (sequential or concurrent) and hence performed on any type of chip, however

with a sheer di↵erence in time and/or energy endowment. Therefore, there is some degree

of interchangeability between chip types that can be expressed in terms of software. Note

though, that execution of some programs is so ine�cient on a particular chip (e.g. for ANNs

parallelism as a requirement to converge to a solution in reasonable time) because of yet absence

of developed software environment or framework that would allow e�cient execution on another

model of computation. In practice, what matters is how many programs can be performed using

a specific chip within a reasonable span of time and energy envelope. Therefore, the flexibility

13More precisely, under energy consumption we mean the amount of energy required to move an electric charge,
expressed in joules (J). Thus, energy e�ciency can be measured in joules per second which is equal to Watts:
W = J

s .
14FLOPS stands for floating point operations per second.
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of a chip is modeled as follows:

Si = si + ⇢isj ⇢i 2 [0; 1] (3.1)

Sj = sj + ⇢jsi ⇢j 2 [0; 1] (3.2)

si + sj = 1 (3.3)

The total amount of software that can be run on, for example, a chip i is Si which consists

of two components: (i) the amount of chip–specific software si, (ii) a share of software written

for the other chip that can be interchangeably run on both chips ⇢isj . The total amount of

programs to be performed is normalised to 1.15 The parameter ⇢i reflects software’s partial

(⇢i < 1) and in most cases asymmetric (⇢i 6= ⇢j) interchangeability between chips. In sum, the

magnitude of Si approximates the flexibility of computation that chip i provides.

The di↵erence in values of the two chips can be written down explicitly:

V i � V j = EiSi � kEiSj

= Ei(si(1� k⇢j) + sj(⇢i � k))
(4)

To analyse the comparative statics of the value di↵erence shown in equation (4), we simply

take partial derivatives with respect to each variable in the expression.

@(V i � V j)

@k
= �Ei(si⇢j + sj) = �EiSj < 0 (5.1)

@(V i � V j)

@⇢j
= �Eisik < 0 (5.2)

@(V i � V j)

@⇢i
= Eisj > 0 (5.3)

Equation (5.1) shows that the more e�cient (higher k) the chip j in terms of combined

performance and energy e�ciency in comparison with the chip i, the smaller the gap between

the chips’ values, other things equal. An increasing capability ⇢j of the chip j to run software

si written for the chip i also reduces the gap between the chips’ values in favour of the chip

j. Contrariwise, increasing ⇢i leads to growth of the gap in favor of the chip i, other things

equal. The two derivatives with respect to the ⇢ parameters can be interpreted as the attempts

of producers to invest in architectural improvements in order to incorporate the functionality of

the competing chip, and therefore to manipulate the indirect network externalities.

The remaining two variables si and sj can be interchangeably expressed according to (3.3),

hence si = 1 � sj and sj = 1 � si. Using this substitution and taking partial derivatives, we

obtain the following:

@(V i � V j)

@si
= Eik(1� ⇢j) + Ei(1� ⇢i) > 0 (6.1)

@(V i � V j)

@sj
= �Eik(1� ⇢j)� Ei(1� ⇢i) < 0 (6.2)

15We purposefully do not model a law of motion for si, as we are interested in understanding the allocation of
users across systems given a set of available supporting software and their degree of ‘multihoming’ captured by
the ⇢ parameters.
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These equations show that with a growing amount of software si written for the chip i the

gap (V i�V j) increases, while the opposite holds for sj . In general, the technical superiority of a

chip i in terms of performance per Watt Ei = kEj , along with more tasks supported on this chip

si increases its value V i and hence increases the gap (V i�V j). If the software interchangeability

parameter of a chip ⇢i would be equal to 1, that would mean that chip i is capable of performing

all the tasks that chip j does. In other words, if ⇢i = 1, the chip i would support the highest

possible flexibility of computation. However, precisely the imperfect interchangeability of chips,

captured by ⇢i < 1, doesn’t allow for completely dismantling either of the chips. Lastly, it is

worth stressing that here we want to analyse the dynamics of the values gap when varying each

of the component. Therefore, while the expression (V i � V j) can grow along, for example, si,

the absolute value of the gap can be any, positive or negative, namely (V i � V j) T 0.

2 3 4 5 6 7 8

�1

�0.5

0.5

1

t = 2 t = 1

k

(V i � V j)

Figure 3: E↵ect of the e�ciency multiplier k on the di↵erence between chips’ values (V i � V j) varying
flexibility parameters si, sj , ⇢j

t = 1: si = 0.9, sj = 0.1, ⇢j = 0.05;
t = 2: si = 0.8, sj = 0.2, ⇢j = 0.1
Ei = 1, ⇢i = 0.3 for both t = 1, 2

As highlighted by the construction of the trilateral frontier, the superiority of one chip over

the other is based on three factors combined together. For example, it is not su�cient for a chip

to exhibit the lowest energy consumption if the processing speed and flexibility available are

low. Moreover, even any pair–wise superiority can be outweighed by a deep enough inferiority

with respect to the remaining third characteristic. In order to illustrate how the superiority of a

chip is reached through the balancing of all the three frontier’s characteristics, we constructed a

stylised example, visualised in Figure 3. In this example, in period t = 1 the amount of software

performed on chip j is only 10%, sjt=1 = 0.1, and only 5% of programs performed on chip i are

interchangeably executable on the chip j, ⇢jt=1 = 0.05. In period t = 2, both parameters are

doubled, namely sjt=2 = 0.2 and ⇢jt=2 = 0.1. Note that according to (3.3) if sjt=1 = 0.1 hence

sit=1 = 0.9, then if in the second period sj increased to 0.2 hence sit=2 = 0.8. This doesn’t

necessarily mean that the absolute amount of tasks performed by the chip i has shrunk; it might

simply mean that the amount of tasks performed by the chip j expanded without taking over
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tasks from the chip i; this can be the case of ANNs. Thus, in period t = 1, given the setting,

in order to have equal values, (V i � V j) = 0, for the chip j it is required to be almost 6.5

times more e�cient in terms of combined e�ciency E (performance per Watt) than the chip i,

kt=1 = 6.41. In the second period t = 2, when the amount of software that can be run on the chip

j reaches 20%, sj = 0.2, and interchangeability doubles from 5% to 10%, ⇢jt=2 = 0.1, in order

to have equal values chip j has to be only 3 times more e�cient, kt=2 = 3.07. This numerical

example displays the mechanism at work, but might not represent an accurate calibration of the

parameters. However, it illustrates the trade–o↵s and balance through which superiority can be

achieved.

Finally, it is extremely important to note that, despite the fact that the numerical expres-

sions of improvements of sj and ⇢j are incremental from one time period to another, it can

be technically rather hard to achieve such improvements, which might also take a substantial

amount of time; time periods used in the example are not specified but could be one year or a

couple of years, resembling the timing of each next technological node in the industry.

Supply Side. On the supply side we assume a duopoly with price competition. Thus, we

are searching for a Nash–Bertrand equilibrium. By equalising utilities from equation (1) we

obtain the indi↵erent consumer:

x̂ =
V i � V j + pj � pi + �

2�
(7)

Each firm has a profit function:

⇡i = piqi = pix̂; ⇡j = pjqj = pj(1� x̂) (8)

Maximising profit with respect to price, we derive the Nash–Bertrand pair:

piNB =
V i � V j + 3�

3
; pjNB =

V j � V i + 3�

3
(9)

For equilibrium prices to be non–negative the condition �3�  V j � V i  3� has to be

fulfilled. Finally, plugging the results of equation (9) into (7) we obtain the final formula for the

indi↵erent consumer:

x̂ =
V i � V j + 3�

6�
(10)

The position of the indi↵erent consumer is defined by two factors. First, the di↵erence in

chips’ values (V i � V j) whose analysis was shown in equations (4)–(6) can be employed here as

well. Second, the disutility � from the level of mismatch between computations used by a con-

sumer and computations available on the purchased chip. Deepening further the interpretation,

this means that the parameter � reflects a degree of application specialisation or computational

convergence. Let’s imagine for simplicity that each application market needs a chip to perform

one task. One corner case would be when every task is performed by a single algorithm estab-

lishing an unequivocal correspondence between the two; in that case � is the highest because

every task is a distinct type of computation. The second corner case would imply that every

task consists of all possible types of computation; in that case � must be low because all tasks

are composite. From an economic perspective, in the first case an application market runs only
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one type of computation, hence it has a strong preference for a chip that runs this calculation

better. More generally, if demand consists of consumers each employing highly homogeneous

and distinct computation, � for the chip–making industry would be very high. The realistic case

is none of the extreme ones, with demand consisting of consumers each using its own mixture of

algorithms and only few consumers representing extreme cases each using either purely homo-

geneous or purely heterogeneous calculations. That is why � can be interpreted as a measure of

mismatch between the variety of software supported on a chip and the variety of computations

used by a consumer.

The model does not contain a cost variable; however, implicitly a higher value is associated

with higher costs to achieve it. For example, according to the financial statements of the

ASML Holding (the leading company in the market of photolithography systems), the price

of an average system sold in the first half of 2019 is in the range of 36–38 millions of euros

(ASML Holding, 2019). Such equipment is highly standardised and it would only account for

the initial investments to establish the production process. Leaving aside the formal mechanism

of cost formation, in our model we deal with its final instantiation — the price. From an

economic viewpoint, the purpose of our model is to show how the shares of demand are driven

by the frontier’s characteristics and prices as a touch–point of supply and demand. Thus, costs

are involved implicitly through the cost of production of a chip with a particular value and its

improvement with respect to the frontier’s characteristics. It is beyond our analysis to explain

how a particular value of a chip is achieved, while extensive technological insights regarding

chips’ characteristics and directions of their improvement currently under exploration in the

industry were provided in previous Sections. Here we simply assume that every firm estimates

its fixed costs to produce a chip and the quantity demanded in order to understand whether or

not the production of a chip will be profitable, exploiting either a high price at low quantity or

economies of scale at a low price. If a firm estimates that costs might overweight revenues, it

doesn’t enter the market.

Parallels in the Marketplace. The frontier’s characteristics are operational leverages

on which a semiconductor company can act in order to improve its product; producers choose

technical approach and the degree of addressing these characteristics based on cost–benefit

analysis, aspiring to create a product that appeals to a larger share of demand. In the previous

Sections we provided examples of innovations in architecture, elements, materials and techniques

that target processing speed, energy e�ciency, and flexibility. Hierarchical networks instead of

bus interconnect, experimentation with wafer size, new materials and signal types, 3D instead of

planar transistors, die stacking, in–memory computing, array and neuromorphic processors, and

heterogeneous SoC, all illustrate producers’ actions undertaken to act on di↵erent segments of

the trilateral frontier. Their decision results in the next generation of chips with di↵erent values

o↵ered to consumers. The real–world example of such behavior is Intel’s Process–Architecture–

Optimization strategy that was implemented in 2016, replacing the so–called Tick–Tock strategy.

Provided that we model flexibility through the software domain, this implies that producers

can allocate their e↵ort to increase the flexibility supported by their products in two ways: (i)

introducing changes in hardware to expand functionality and through that encompass more of the

existing software from the competitor; in other words, increase ⇢i, (ii) investing in the expansion
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of the software set written specifically for a producer’s own chip, which means increasing si.

The first way, the introduction of hardware changes, is discussed at length in previous Sections,

therefore we now focus on the second way, software–related changes. As mentioned in Section

3 regarding GPGPU, Nvidia developed the CUDA framework to support its products; the

consortium Khronos Group works in the same direction of heterogeneous computing with its

OpenCL framework designed by Apple. Other open–source platforms like Google’s TensorFlow

and Microsoft’s CNTK are aimed at the collaborative development of dataflow software solutions

to run on chips that can support them, such as TPU or CPU–GPU tandem. By adapting

the existing software and writing programs that can e↵ectively run on its product, a firm i

increases the value of its chip i targeting precisely the si component. However, producers of the

competing chip j can counteract by developing instruction set architecture (ISA) extensions.16

Modifying ISA by including additional packages of new commands allows the competing chip

j to encompass some functions performed on the chip i. In terms of our model, such e↵ort

a↵ects ⇢j . As an example, we can mention Advanced Vector Extensions (AVX) and its further

extension Vector Neural Network Instructions (VNNI) from Intel for x86 ISA, Vector Multimedia

Extension (VMX also known as AltiVec) by IBM for Power ISA and NEON technology from

ARM Holdings for its eponymous ARM ISA.

In sum, our model reveals the mechanism driving the distribution of demand based on chips’

technical characteristics, available software and how well overall a chip meets the computational

needs of consumers. A better–developed software environment and compatibility indicate higher

flexibility of a chip, which can appeal to a larger share of demand. In turn, demand is charac-

terised by degree of di↵erentiation with regard to the frontier’s characteristics: the higher the

di↵erentiation the more precise features of a chip are required by each application market. In

general, a chip can exhibit either (i) Pareto improvements with respect to any of the frontier’s

characteristics gaining more applications or (ii) a trade–o↵ between each couple of characteristics

shifting the set of applications.

4.2 The Industry at a Crossroad: Alternative Scenarios

From the discussion so far we set out a collection of mechanisms and forces shaping from the

outside and within the evolution of the semiconductor industry. Exogenous challenge that

arrived from the AI segment tests the robustness of the established technological trajectory. In

fact, this time the challenge lies at the fundamental level of the computational model on which

chips are built on. Residing in declarative programming paradigm that is ine�ciently executed

on established sequential model of computation, AITs triggered a wave of innovation e↵orts that

resulted in numerous novel products with the dataflow architecture at their core. It is becoming

clear that the simple speedup race between competing chips is not the central issue for the

future of the semiconductor industry; rather, the more profound issues of organizing the logic of

computation and variety of algorithms that a chip can support in order to appeal to a su�cient

share of demand are key. The question now is how chips will evolve this time. Considering all

the factors at play, we derived two scenarios on which the industry can converge.

16In essence, ISA modifications are on the borderline between hardware and software (programmatic) changes.
Given ISA’s undeniable programmatic element, here we employ example of ISA modifications that, similarly to
hardware changes, impact ⇢j .
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Scenario I Under the relentless pressure of economic factors within the semiconductor in-

dustry and the continuous but siloed pull from the downstream markets for market–specific

improvements, producers might decide to pursue trajectories tailor–made to subsets of down-

stream markets, grouped around specialised chips that accurately address needs within given

submarkets. A customisation strategy and hence the fragmentation of the semiconductor indus-

try might occur.

Scenario II Aspiring to address larger shares of demand associated with greater but proba-

bly delayed payo↵s, chip producers can make long–term investments at the system level, aimed

at the creation of a platform chip comprising heterogeneous cores. To achieve that, the overar-

ching architecture must reproduce a composition of components on a chip that ensures scalable,

heterogeneous and energy–proportional computing. Developed in response to the call of one seg-

ment, the platform chip can di↵use over time among other downstream markets with decreasing

cost of production and, hence, price.

Arguments ‘pro’ and ‘against’ exists for each of the scenarios. According to our model, if

the demand is significantly di↵erentiated it is harder to acquire a large share of consumers (see

10), other things equal. The smaller the size of potential demand aggregated over application

markets, the harder it is to return high costs of design and fabrication of an heterogeneous

chip. Thus, naturally, if di↵erentiation is high, the viable strategy is that of fragmentation

of the semiconductor industry’s o↵er into several distinct chips, each characterised by unique

performance with respect to the frontier’s characteristics; application markets decide to purchase

either one or a set of chips based on their needs.

Thompson & Spanuth (2018) advocate for the first scenario by linking the future dynamics

of chips production to the dual–inducement mechanism typical of General Purpose Technologies

(GPTs) (Bresnahan & Trajtenberg, 1995). They develop a model of choice between univer-

sal and specialised processors based on relative speed up factor and identify a cut–o↵ point

from which the specialised processors become more appealing than the universal ones. As more

and more downstream markets switch to specialised processors, this leads to the halt of the

dual–inducement mechanism for universal processors. Thus, they expect the end of the GPT

paradigm of universal processors and envisage a situation of application–based market fragmen-

tation with specialised computing evolving in more compartmentalised domains. This prediction

rests on (i) a view of the processor as the singleton GPT technology and (ii) the assumption

that processing speed is the sole criterion of the choice of a processor. Concerning (i), from

this perspective, processors can be considered as pure competing alternatives. However, we also

need to consider the possibility that it is the SoC the candidate for the role of GPT, while

processors are complementary blocks. As for (ii), we acknowledge that processing speed is an

important factor and included it among the frontier’s characteristics. However, we argue that it

is not the sole criterion for all applications and might not be the primary one for some share of

applications. For the development of AI itself, “[f]ocusing on raw computing power misses the

point entirely. Speed alone won’t give us AI. Running a poorly designed algorithm on a faster

computer doesn’t make the algorithm better; it just means you get the wrong answer more

quickly. (And with more data there are more opportunities for wrong answers!) The principal
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e↵ect of faster machines has been to make the time for experimentation shorter, so that research

can progress more quickly. It’s not hardware that is holding AI back; it’s software.” (Russell,

2019). As we pointed out earlier in Section 3.1, even at the level of processor for AI there is an

ongoing search for a more flexible architecture and “TOPS/W alone considered harmful” (Sze

et al., 2020). In general, the software domain is dynamic and evolves faster than hardware due

to lower costs inherent to information products (Goldfarb & Tucker, 2019), hence the variety of

software solutions that a consumer (market, firm or individual) can employ increases over time.

Optimization of hardware for a specific software for the sake of faster processing might result in

a very limited set of application markets and in a shorter product life cycle. Instead, flexibility

is a more sustainable strategy for a chip producer.

Building on the aspect of flexibility, there are arguments in favor of the platform chip sce-

nario. Given that hardware flexibility can be approximated with the amount of software that

is e↵ectively run on a chip, the presence of indirect network externalities does have significant

implications for the semiconductor industry. This approach suggests that consumers’ decision

upon which hardware system to buy is a↵ected by complementary products or supporting ser-

vices, in this case software, available for each system. In particular, Church & Gandal (1992)

model the e↵ect of the decision of software firms upon software provision on the market share

and the number of hardware systems that will exists in equilibrium. Their analysis shows that

when consumers’ preferences on software variety are relatively high17, this leads to the exclusive

adoption of one of the hardware systems if a critical minimum amount of software is provided.

Furthermore, in the case in which two hardware systems exist, total surplus would be higher

under many parameters’ values if a standard (a single hardware system) was mandated. Thus,

strong preference for software variety is associated with the choice of one hardware system. By

translating software variety into hardware’s flexibility, in our model flexibility is a variable that

characterises the chip and producers can act upon it by either writing software supported on

their chips or by increasing compatibility with the existing one.

In our analysis we covered the technical performance of a chip and demand’s preferences as

factors that shape the technological trajectory and steer the development of the semiconductor

industry. The last factor that can tip the balance in favor of one or the other scenario is

concentration of market power among chip producers. There is a number of big players in

the semiconductor industry even at the global level; some of them we already named, such

as Alphabet, Amazon, Alibaba, Huawei, Samsung, Nvidia, Intel. Many of these companies

are cross–industry actors that comprise a diverse portfolio of assets that they built to pursue

internally established goals. The dimension that matters in the context of the semiconductor

industry is edge versus cloud computing. Some of these big players are cloud–oriented like

Google and Amazon and they already direct their innovative e↵ort to develop in–house chips to

support AI through their cloud services. The primary focus of such chips would be concurrency

and speed to support numerous users working concurrently by providing low latency. The

already mentioned TPU of Google and Trainium and Inferentia chips of Amazon serve exactly

this purpose, being fast, highly parallel and energy e�cient however non–flexible. Thus, cloud

computing would rather benefit from a set of dedicated chips combined together to deliver

17The benefit from high software variety available on a chosen hardware system has to overweight the disutility
from spending on the purchase of various software, the price of hardware and the degree of its di↵erentiation.
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state–of–the–art performance with respect to each frontier’s characteristic. Contrariwise, chip

producers that place their bid on edge computing lean toward more independent and capable

devices and, hence, direct their innovation e↵orts in the direction of the platform chip. The

already named Huawei’s Ascend 910 is one example. Another prominent example is Apple’s M1

chip that comprises CPUs, GPUs and Neural Engine cores in one SoC.18 Apple stresses the edge–

oriented application of its chip with high performance, low energy consumption and flexibility

achieved through integration of heterogeneous cores. In line with our reasoning, Apple acts on

hardware’s flexibility through software variety as well providing Core ML software framework

for programming, and optimising its Big Sur operating system to work with the M1 chip. In

sum, there are pieces of evidence suggesting that a dominant design for the dataflow processor

is on the way while at the same time there is ongoing experimentation with the configuration of

the platform chip.

5 Related Literature and Discussion

The analysis o↵ered in this paper relates to a number of contributions in the literature. We

review the works most related to our study and emphasize similarities and di↵erences. To

organise the review, we highlight the dimensions shared by our study and the discussed works

with respect to, for example, the level of analysis, the industry considered, the economic and

strategic or technological arguments provided, and the role played by demand and supply. We

start with a focus on the semiconductor industry to identify the forces and mechanisms shaping

its technological trajectory and innovation; then, we progressively move to the computer industry

to discuss the similar dynamics produced by the introduction of new products. Finally, we take

a more fine–grained perspective centred on the design of platform products, whose rules apply

to computers as well as to chips.

Steinmueller (1992) focuses on the semiconductor industry and provides a supply–side analy-

sis of the economic arguments — in particular production economies and dis–economies — that

have contributed to maintain chip production for decades on a stable technological trajectory tied

to the von Neumann architecture and to miniaturisation as its main innovation direction. The

paper outlines the trade–o↵ between specialisation and standardisation that characterises the

industry. Economies of scope fuelling product variety (and, thus, specialisation) and economies

of scale fuelling production expansion (and, thus, standardisation) are at odds with each other,

and the semiconductor industry has mostly pursued economies of scale. The reason for this is

that chip production is characterised by the so–called capacity races — the incentive to engage

in mass production in order to amortise large costs of equipment capable of little flexibility.

The unprecedentedly big chip produced by Cerebras, which is fabricated on conventional pho-

tolithographic equipment is recent evidence of the persistent importance of equipment cost as

economic factor. Capacity races produce two economic e↵ects; the first one concerns the incen-

tives for firms to be first movers in innovation by pre–empting competitors in the introduction

of new generations of chips in order to earn additional payo↵s out of the investment in capacity.

The second e↵ect is the incentive to push for cost reduction in order to hasten the scaling up

18https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
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of production. While Steinmueller advocates for the exploration of flexible chip manufacturing

technologies to make product variety economically viable at low output volumes, the forces he

highlighted have mostly prevailed and kept the industry on a well–defined trajectory of stan-

dardisation and mass production. The same dis–economies of scope that enabled the production

at scale of processors embodying the von Neumann architecture can push chipmakers to produce

a platform chip. The success of ANNs and the demand for AI applications has drawn chipmak-

ers’ attention to concurrent models of computation, but the forces pushing for standardisation

can again create a strong incentive to the integration of heterogeneous processors into a single

product that can exploit economies of scale.

Adams et al. (2013) study innovative activities in the semiconductor industry in the 80s and

90s. They take a sectoral systems of innovation perspective to highlight the role played by in-

termediate users’ demand in innovation. From the supply–side, a series of technological changes

(i.e. the development of Electronic Design Automation tools) allowed for the dis–integration of

the chipmaking supply chain. With weaker ties between the design and manufacturing phases,

entry barriers for specialised firms (e.g. the so–called ‘fabless’ firms) at di↵erent points of the

chain lowered. The new actors could partner with foundries to o↵er specialised designs to specific

market niches and co–exist next to integrated producers, as the latter focus on more systemic

innovation that require superior coordination e↵orts (Kapoor, 2013). From the demand–side, an

increasing amount of the market niches started to emerge with the opening of new applications

for integrated circuits — in particular wireless communication and mass consumer products;

these niches are characterised by the demand for tailor–made chips. The combination of more

fragmented production processes and di↵erentiated final demand increased the importance of

application knowledge, and thus induced co–innovation by semiconductor and user firms. While

Steinmueller’s capacity races have confined chip production within a well–defined technological

trajectory shaped by economies of scale, the supply chain dis–integration illustrated by Adams

and co–authors has allowed an increase in product variety through the production of specialised

chips for market niches. However, this dynamics relaxed but not dismantled the dominance of

classic von Neumann chips.

Malerba et al. (2008) analyse to the joint structure of the semiconductor and computer in-

dustry and use a ‘history–friendly’ model to reproduce the discontinuities that technological

innovations in semiconductor devices induced on the industries. The paper provides a simula-

tion of economic and technological mechanisms on both the supply and demand side to map

the co–evolution of two industries’ market structures. For example, the authors discuss how the

introduction of integrated circuit in the 60s allowed IBM to control both the development of semi-

conductor devices and their implementation in mainframe systems such as the IBM System/360.

The microprocessor, introduced by Intel in the 70s, challenged IBM vertically–integrated pro-

duction, dis–integrated the supply chain and lead Intel to dominate the semiconductor industry.

Each new class of semiconductor devices triggered changes in the industry’s structure. The latest

technological discontinuity we describe in our paper — the embedding of the dataflow model of

computation into chips as a result of ANNs ‘shock’ success — will also reverberate into changes

in the industry’s organisation. The current turbulence characterised by exploration of product

designs and entry by companies dominating in adjacent markets (e.g. Nvidia, Amazon, or Ap-
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ple) and startups (e.g. Cerebras or Graphcore) might turn into a new structural equilibrium as

soon as production economies and dis–economies will play out.

In general, we can consider the problem of producing a new chip capable to integrate sequen-

tial and concurrent models of computation as a problem of bundling features into the overall

configuration of a product that combines heterogeneous components. Such configuration is an

instantiation of a ‘platform product’ in the context of the semiconductor industry. Platform

products have been extensively studied in the context of the computer industry. The industry

has been producing computer platforms (an innovation inaugurated by the IBM System/360 —

see Baldwin & Clark (2000)) integrating di↵erent components — chips being a core and often the

highest–value one. A platform chip and a computer platform are two di↵erent types of product;

however, the mechanisms at work shaping the configuration of a platform are essentially the

same at di↵erent levels. Any platform product is subject to dynamic tensions of both economic

and technological kind, as the relationship among its components needs to accommodate both

innovation and degrees of (backward) compatibility. These tensions emerge at many levels, from

the industry to the firm and product level. For this reason, while the focus of our paper is a

very fine–grained one — the platform chip — we can refer to findings from the literature on

computing platforms.

Bresnahan & Greenstein (1999) take an economic perspective on computer platforms, as

they study the evolution of technological competition and market structure in the computer in-

dustry. Focusing on the industry, their scope of analysis is broader than ours as they consider in

detail the industry and segment–wise convergence to equilibrium. However, the key points they

make applies to our case as well: first is the need to focus on (platform) products rather than

firms as unit of analysis. In fact, computer platforms (such as the IBM System/360, or Apple

Macintosh) have been the point of interaction between supply and demand in the computer in-

dustry. A second key element is the role of endogenous sunk costs and demand (reflected in the

market segments served by the industry) in shaping which platform product gains dominance

and persistence. A third important element regards the nature of competition in the industry

after what they label the ‘competitive crash’ of the 90s: platform competition within the same

market segment was the result of indirect entry, with new computer platforms first entering a

novel market segment with specialised (usually technical) users and then moving to established

segments (business and then consumer users — a dynamics illustrated also in Bresnahan & Yin

(2010)). Bresnahan and Greenstein’s account of the computer industry’s evolution around plat-

forms illustrates how industry–wide and within–segment equilibrium are related. “Equilibrium

in each segment of the computer industry obeys its own logic of concentration and persistence,

determined by buyer/seller interactions” around a platform; indirect entry allows segment dy-

namics to channel change to the industry level. This dynamics resulted in a ‘divided technical

leadership’ in the computer industry. Our model is a snapshot of this very mechanism at work

in the context of semiconductor industry, where the matching of chips with demand structure

(with user needs approximating market segments) determines the industry–wide equilibrium

split among alternative technologies. In particular, we can apply their framework to our case by

considering AI–users a novel market segment for the semiconductor industry. Through indirect

entry, new chips can occupy the segment of AI–users first and then move to compete with estab-
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lished products in other segments. As in the case of the computer industry, the success of direct

entry or the insulation of a new platform within a segment depends on several factors — the

di↵erentiation of demand’s needs in di↵erent segments, as well as the technological features of

the new chip. A platform chip integrating classic and AI–specialised components could induce

a competitive crash with dominant products in many segments served by the semiconductor

industry.

Taking stock, our paper shares with Malerba et al. (2008) the interest on technological dis-

continuities. Instead of focusing on the varying structure of the semiconductor and computer

industries’ supply chains, we are interested in how the push to introduce chips capable of sup-

porting AI applications as a new discontinuity will influence chipmakers product design. Our

focus is on how producers will bundle AI–related computations into the functionality supported

on a chip, considering that their production choices are influenced by technical feasibility, de-

sign and fabrication costs, the matching between product characteristics and end–users demand.

Taken together, Steinmueller (1992), Adams et al. (2013) and Bresnahan & Greenstein (1999)

provide us with a useful framework to understand the channels through which such new product

can emerge and whether it can appeal a major share of market segments (and demand needs), as

suggested by our Scenario II. Adams and co–authors and Bresnahan and Greenstein show how

the structure of demand (and its participation in innovation) is a potential source of product

variety. Steinmueller shows how dis–economies of scope drive the industry back towards stan-

dardisation. The current moment is a crossroad. One the one hand, the standard over which the

industry settle can emerge through the process of indirect entry and a new competitive crash.

In our case, the commercial use of AI and ANNs has indeed induced the exploration of new

product space; the successful design of a platform chip integrating AI and non–AI components

can enter a specific market niche first and from there di↵use and emerge as a dominant design

for the whole industry. On the other hand, high costs and the appeal to an insu�cient share of

demand can fragment the product space resulting in non–overlapping demand clusters served

by custom chips. All these mechanisms can be rationalised by our model by considering the

tension between high di↵erentiation in the structure of demand and at the same time one of the

competing systems displaying high flexibility so to serve at scale a large share of the markets.

Cusumano & Gawer (2002), Gawer & Henderson (2007), and Burgelman (2002) shift the

analysis from the industry to the firm and product level. As the product platform they study

are microprocessors, their work is proximate to ours in terms of the level of analysis. These stud-

ies provide a more find–grained analysis of the tensions emerging inside the leading platform

sponsor, Intel. The tensions they describe relate to strategic management choices but capture

mechanisms at work in our case as well. Cusumano & Gawer (2002) focus on the platform

level and discuss the tensions emerging in the process of balancing the relationship between the

platform owner (the firm controlling the core architecture of the system) and its complemen-

tors. In a platform product, owner and complementors are linked in an ecosystem that displays

non–generic and supermodular complementarities (Jacobides et al., 2018). Chipmakers such as

Intel experience ‘platform dependency’ as — to quote the Director of Intel Architecture Lab

mentioned by the authors, “(w)e are tied to innovations by others to make our innovation valu-

able”. Intel’s strategy with respect to complements is explored in depth in Gawer & Henderson
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(2007). They study the incentives for the platform owner to enter complementors’ markets; the

tensions highlighted in this case are prevalently those internal to the organization. In fact, the

strategy to expand the demand for microprocessor implied growing the whole computer plat-

form (microprocessors plus complements) and, thus, to allow complementors to grow profits as

well. However, a balanced growth of the whole platform contrasted the need of Intel to enter

and ‘squeeze’ profits from complementary markets (for example motherboards, online services,

PC peripherals and accessories). To address this tension, Intel entered complementary mar-

kets only when the company matched the capabilities of the competitors and prevalently when

the complementary markets were ‘connector’ markets, those producing products that embodied

interfaces to the core technology (e.g. chipsets, or motherboards). Burgelman (2002) zooms fur-

ther into organizational mechanisms to illustrate the role of leadership in resolving the tensions

occurring within Intel, in particular in the period surrounding Andrew Grove’s tenure as CEO

(1985–1998). Burgelman stresses how innovation taking place at the level of the platform prod-

uct tied Intel (the producer of the highest value component of computers, microprocessors) to

its complementors. This tying resulted in a co–evolutionary lock–in (the platform dependency

of Gawer and Cusumano), which has strongly impacted Intel’s strategy: to maintain market

power, Intel needed to align the pace its technological advances to that of the whole system.

The relevance of co–evolutionary lock–in becomes evident in Burgelman’s recounting of the reso-

lution of Intel’s ‘internal battle’ between the i860 and the x86 microprocessor architecture (and,

respectively tied to them, between the so–called RISC and CISC instruction set). Intel opted for

the x86 architecture, especially as it decided to follow the strategy vector leading to focus on the

personal computer (PC) market segment; in fact, Intel “increasingly tied its strategic direction

and economic fortunes to the evolution of the PC market segment”. Co–evolutionary lock–in

has been an additional force, this time technology–driven and occurring at the product and firm

level rather than emerging from dis–economies of scope and applying to the whole industry,

to conserve the semiconductor industry persistent technological trajectory. As dis–economies

of scope can push the current state of the semiconductor industry towards our scenario II, the

same holds with co–evolutionary lock–in: chipmakers can explore alternative product design,

but their economic fortunes are tied to their complementors. As long as uncertainty charac-

terises the future applications and evolution of AI algorithms, the development of a platform

chip design would ease coordination among actors and provide a safer bet regarding the future

evolvability of the system.

In line with our paper, the studies we reviewed highlight tensions and di↵erent mechanisms

shaping a platform product. However, they all tell a story placed within the established tech-

nological trajectory with the sequential model of computation at its core; instead, we look at

the impact of a more profound technological discontinuity — the exhaustion of the capability

of the sequential model of computation to address an increasing variety of algorithms and the

rise of concurrent model of computation. Despite AI being an active field since the 1950s, this

discontinuity did not take place before because AI as an application segment did not have a big

weight and only recently entered a commercial phase at scale. Before the current AI commercial

boom, the majority of other applications requiring computing devices could get by with the

ever–improving von Neumann architecture. The competitive crash among computer platforms

28



described by Bresnahan and Greenstein and the changes in the structure of the semiconductor

industry supply chain discussed by Adams and co–authors occurred in response to disconti-

nuities in technology and changes in demand, but were not contesting the organisation logic

of chips. Instead, the increasing demand for AI–related computing that we unpacked starts

to exert a stronger pressure than the prevailing architecture could accommodate, launching a

wave of radical and architectural innovations, respectively developing specialised components

and experimenting with the design of a platform chip.

6 Conclusion

In this paper, we investigated how a technological discontinuity can impact product design and

production strategies in a highly technological industry. The industry we focus on is the semi-

conductor industry, and the technological discontinuity is introduced by the novel application

segment of AITs that grows rapidly. In turn, the use of AITs for a growing variety of applica-

tions produced an increasing demand for compute. This has triggered a search for the hardware

(chips) capable of executing AI algorithms such as ANNs more e�ciently. The chips on which

the semiconductor industry has built its success and that dominated its technological trajectory

for decades are built around the von Neumann architecture, that is ill–suited to execute mod-

ern AI algorithms and ANNs in particular. In fact, the commercial boom of AI has shed light

on the limitations of this classic architecture despite its continuous performance improvements

over time. For this reason, chip producers are shifting attention to alternative architectures to

implement in their chips. The prospective candidate is the so–called dataflow architecture. This

is the hardware implementation of the concurrent model of computation, a di↵erent model com-

pared to the sequential one at the core of the von Neumann architecture. The properties of the

dataflow architecture match better the organisation of computation underlying AI algorithms.

This technological discontinuity with respect to the industry’s established technological trajec-

tory represents the challenge the chipmakers are currently facing. Thus, we studied the nature

of this discontinuity and how forces and mechanisms at work in the semiconductor industry

might steer its further development in one of two potential scenarios.

As our study deals with technological innovation in a highly technological industry and

stresses the systemic relationship between hardware and software, it is a novel contribution to

several strands of literature, from the economics of AI to the study of platform products in the

context of the economics and strategic management of the semiconductor and computer industry,

as well as to the literature on technological trajectories. In the analysis, we combined insights and

perspectives from di↵erent fields such as AI, engineering and computer science with modelling

approaches from the economics of software and system products. In order to assess the direction

in which the AI discontinuity is steering the design of chips, we started our study by overviewing

the computational framework for ANNs. We highlighted how ANNs are endemic to the so–called

declarative programming paradigm in virtue of their organisational logic as algorithms, and how

the concurrent model of computation, as opposed to the sequential one, matches this logic. Given

that, we reviewed how models of computation are implemented in hardware architectures and

explored the di↵erence between scalar and vector processors embodying the sequential model

and novel architectures such as array and neuromorphic ones embodying the concurrent model
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of computation.

When designing a chip, producers can opt for one or the other architecture or for an inte-

gration of them into one SoC. The performance of the resulting chip is measured with respect

to the three fundamental characteristics — speed, flexibility, and energy e�ciency — that con-

stitute a trilateral technological frontier. The frontier serves as a benchmark for producers,

guiding their design decisions. However, the market success of a new chip depends on the de-

mand’s preferences with regard to these frontier’s characteristics. We captured this mechanism

with an analytical model determining the distribution of demand between two alternative chips

based on hardware’s flexibility approximated with the software variety available for a chip and

an e�ciency metric that combines processing speed and energy e�ciency. In stylised terms,

the model represents the current state of the semiconductor industry, with AI applications ex-

panding demand variety (directly through itself and indirectly through AI–using segments) and

the di↵erence among competing chips reflecting the experimentation surrounding the design

challenge.

All the forces and tensions we described have derailed the established technological trajectory

of the industry and injected uncertainty regarding the novel track on which it will settle. We

summarised the outcomes to which the future of chip can converge in two scenarios. In the first,

the demand from the AI segment lead to the development of specialised chips but does not induce

changes to the industry–level equilibrium — chip production becomes siloed and fragmented.

In the second, in response to the increasing variety of algorithms with the advent of modern

AI and under the pressure of production economies, chip producers allocate innovative e↵orts

to the flexibility of their products creating a novel platform chip. Such chip would encompass

di↵erent architectures onto a single substrate and come to serve most of the industry’s demand

segments. Both scenarios can emerge out of the current technological turbulence in the industry,

and we lay out arguments in favour and against them. However, we stress that within the AI

field the pace of progress is high, as well as software domain is more dynamic than hardware.

The growing variety of (competing) AI techniques and algorithms raises a valid concern with

over–specialisation; given the high costs to develop and produce novel semiconductor devices and

the high inertia of these processes, the decision to fork the production of chips with specialised

products tailored to current AI algorithms while other approaches are yet in their infancy can be

a risky bet for chipmakers. Directing innovative e↵orts towards flexibility and, thus, a platform

chip might result in higher pay–o↵s in the long run. Quoting Marvin Minsky, “[t]he power of

intelligence stems from our vast diversity, not from any single, perfect principle”; the same holds

for the potential appeal of a platform chip capable to harness the diversity of computations.
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